
Hermitian Talk 1: Mind your C’s and Ϙ’s

Kaif Hilman

University of Copenhagen

September 23, 2021

Contents

1 Quadratics, bilinears, linears 1

2 Recognition criteria 4

3 Adjunctions galore 7

4 The quadratic stable recollement 8

5 Hermitian and Poincare structures 11

Abstract

In this note we introduce the basic structure in hermitian K-theory, namely that of (spectral)
quadratic functors. These can in turn be decomposed into their bilinear and linear parts, and the
high point of the note is a stable recollement cleanly packaging these decompositions. Lastly, we
will introduce the fundamental notion of a Poincare category which will be the fuel in all that is to
follow in the modern treatment of hermitian K-theory.

1 Quadratics, bilinears, linears

Recollections 1.1. Let C,D be stable categories. Let P(S) denote the power poset of a set S. An
n-cube in C is just a diagram X : P([n])→ C. We then say that:

• An n-cube X : P([n]) → C is strongly cocartesian if it is a left Kan extension of X|P≤1([n]). In
other words, all its 2-faces are cocartesian.

• An n-cube Y : P([n])→ D is cartesian if it is a right Kan extension of its restrictionP([n])\{∅} →
D.

• A (not necessarily exact) functor F : C → D is n-excisive if it sends all strongly cocartesian
n-cubes to cartesian n-cubes.

• A (not necessarily exact) functor F : C → D is reduced if it preserves zero objects.

Recall that a functor F : C → D between stables is exact iff it is reduced 1-excisive. Moreover, recall
that if m ≥ n, then an n-excisive functor is always m-excisive, and so in particular, 1-excisive functors
are automatically 2-excisive.

Definition 1.2 (I.1.1.11). Let C,D, E be stable categories.

1

• A functor B : Cop × Cop → Sp is bireduced if B(x, y) ' 0 when x ' 0 or y ' 0.

• A functor b : C ×D → E is bilinear if it is exact in each variable.

Definition 1.3 (I.1.1.14). Let C be stable and Ϙ : Cop → Sp a functor. We say that Ϙ is:

• quadratic if it is reduced and 2-excisive,

• linear if it is reduced and 1-excisive (in other words, exact).

We’ll need to establish a bunch of notations for the kinds of functor categories of interest.

Notation 1.4. Let C be stable. Then we denote by

• Fun∗(Cop × Cop, Sp) the category of reduced functors. Note that this has a canonical C2-action
given by swapping the two copies of Cop,

• BiFun(C) ⊆ Fun∗(Cop × Cop, Sp) the full subcategory of bireduced functors,

• Funb(C) ⊆ BiFun(C) the full subcategory of bilinear functors. This clearly inherits the C2-
action,

• Funs(C) := Funb(C)hC2 which we call the category of symmetric bilinear functors,

• Funq(C) ⊆ Fun(Cop, Sp) the full subcategory of quadratic functors.

Note in particular that Funex(Cop, Sp) is a full subcategory of Funq(C).

Remark 1.5 (Quadratic (co)completeness). Note that since being cartesian in the stable category Sp
is preserved under arbitrary (co)limits, the full subcategory Funq(C) ⊆ Fun(Cop, Sp) is closed under
arbitrary (co)limits, and so is in particular stable also.

One of the first basic insights of this story is that much of the Goodwillie calculus framework can
be simplified in the presence of stability and 2-excision. For example, there are many adjunctions
between the categories we’ve introduced, culminating in a stable recollement fo quadratic functors.
This will be the high point of this talk, and for that we will need many constructions.

Construction 1.6 (Bireduction, I.1.1.3). Note that we have a retraction

B(x, 0)⊕ B(0, y)→ B(x, y)→ B(x, 0)⊕ B(0, y)

so taking the cofibre of the first map (or equivalently fibre of the second map since it’s a retraction)
gives a bireduced form which we denote by B(−,−)red. Note that this commutes with restriction
along pairs of reduced functors. This also commutes with the flip functor and so the bireduction
refines to a functor

(−)red : Fun∗(Cop × Cop, Sp)hC2 → BiFun(C)hC2

Note that since we’re in the stable situation, taking bireduction clearly commutes with arbitrary
(co)limits: in fact, it participates in a biadjunction as we’ll state in the next section.

Construction 1.7 (Cross-effects, I.1.1.6). Let C be stable and Ϙ : Cop → Sp be a reduced functor. We
define the cross-effect (or polarisation) to be

BϘ := Ϙ(−⊕−)red : Cop × Cop → Sp

yielding a functor
B(−) : Fun∗(Cop, Sp)→ BiFun(C)

2

This functor commutes with restrictions along direct sum preserving reduced functors, ie. for f :
C → D, we have (f × f)∗BD

Ϙ
' BCf ∗Ϙ. We can also define

B∆
(−) := ∆∗ ◦ B(−) : Fun∗(Cop, Sp)→ BiFun(C)→ Fun∗(Cop, Sp)

Recall that Bred is a retract of B, and so we obtain the following canonical natural transformations(
B∆
Ϙ
⇒ Ϙ

)
=
(

X 7→
(
Ϙ(X⊕ X)red → Ϙ(X⊕ X)

∆∗−→ Ϙ(X)
))

(
Ϙ⇒ B∆

Ϙ

)
=
(

X 7→
(
Ϙ(X)

∇∗−→ Ϙ(X⊕ X)→ Ϙ(X⊕ X)red))
Lemma 1.8 (C2-equivariance, I.1.1.9, I.1.1.10). We collect all the available C2-equivariance here.

1. The cross effect BϘ is symmetric, ie. it’s in the image of the forgetful functor Fun∗(Cop×Cop, Sp)hC2 →
Fun∗(Cop × Cop, Sp).

2. The functor ∆∗ : Fun∗(Cop × Cop, Sp)→ Fun∗(Cop, Sp) is C2-equivariant.

3. And so the natural transformations constructed above descend to

(B∆
Ϙ
)hC2 ⇒ Ϙ⇒ (B∆

Ϙ
)hC2

Proof. Since the bi-reduction functor was C2-equivariant, we just have to show that Ϙ◦⊕ ∈ Fun∗(Cop×
Cop, Sp) lives in the image from Fun∗(Cop × Cop, Sp)hC2 . And for this it suffices to note that

⊕
:

Cop × Cop → C inherits a C2-equivariant structure from the cartesian symmetric monoidal structure
on Cop.

Observation 1.9. For a bilinear B : Cop × Cop → Sp, the functor B∆(x) = B(x, x) is a quadratic
functor by HA.6.1.3.5. Unwinding the bireduction process, the symmetric bilinear part is (x, y) 7→
B(x, y)⊕ B(y, x).

Construction 1.10 (Associated quadratics). For B ∈ Funs(C) we can define

Ϙ
q
B(x) := B∆

hC2
(x) = B(x, x)hC2 Ϙ

s
B(x) := (B∆)hC2(x) = B(x, x)hC2

and these are both quadratic: this is just because B(x, x) is quadratic by the previous example and
Funq(C) is closed under limits and colimits in Fun(Cop, Sp) by (1.5). Note that we have

B
Ϙ

q
B
' B ' B

Ϙ
s
B

since taking cross-effects commute with limits and colimits and so by the previous observation we
get

B
Ϙ

q
B
(x, y) ' (B(x, y)⊕ B(y, x))hC2 ' B(x, y) ' (B(x, y)⊕ B(y, x))hC2 ' B

Ϙ
s
B
(x, y)

Definition 1.11 ((Symmetric) bilinear parts). By (1.8) and (2.4) we see that B(−) : Funq(C)→ Fun∗(Cop×
Cop, Sp) lifts to B(−) : Funq(C) → Funb(C). We call BϘ the symmetric bilinear part of Ϙ, and the under-
lying bilinear functor BϘ as the bilinear part of Ϙ.

Construction 1.12 ((Co)linear parts and (co)homogeneity, I.1.1.22, I.1.3.1). Let Ϙ : Cop → Sp be a
quadratic functor. We define the linear (resp. colinear) part to be the cofibre (resp. fibre)

(B∆
Ϙ
)hC2 ⇒ Ϙ⇒ LϘ or cLϘ ⇒ Ϙ⇒ (B∆

Ϙ
)hC2

Note that by (1.7) this process commutes with restrictions along exact functors. These will be shown
to be exact in (2.4), hence justifying the names. If LϘ ' ∗ (resp. cLϘ ' ∗) then we say that Ϙ is
homogeneous (resp. cohomogeneous).

3

2 Recognition criteria

Lemma 2.1 (Total fibre yoga). Suppose we have a square

A B

C D

in a stable category C. Then there is a canonical identification of fib(A → B×D C) with the total fibre of the
square.

Proof. Write F := fib(A → B) and G := fib(C → D). Recall that by definition the total fibre is given
by X := fib(F → G). On the other hand, note that fib(B×D C → B×D D) ' G since

(B×D C)×B×D D ∗ ' (B×D C)×B×D D (∗ ×∗ ∗) ' (B×B ∗)×D×D∗ (C×D ∗) ' G

Now just consider the diagram

X F G

fib(A→ B×D C) A B×D C

∗ B B×D D

and we’re done.

The following result is quite important: it shows that while quadratic functors are not in general
1-excisive, their failure to be so is totally controlled by its associated symmetric bilinear part.

Lemma 2.2 (Quadratic failure of exactness, I.1.1.19). Let Ϙ : Cop → Sp be a quadratic functor with
bilinear part B. Let

x y

z w

a′

b′ b
a

be an exact square in C. Then the two squares in the diagram

Ϙ(w) B(z, y) B(cofib(b′), cofib(a′))

Ϙ(z)×
Ϙ(x) Ϙ(y) B(z, x)×B(x,x) B(x, y) 0

(1)

are exact. In particular there is a natural equivalence

fib
(
Ϙ(w)→ Ϙ(z)×

Ϙ(x) Ϙ(y)
)
' B(cofib(b′), cofib(a′))

We similarly have dual statements for pushouts.

4

Proof. We consider the maps of squares

Ϙ(w) Ϙ(y) ⇒ Ϙ(z⊕ y) Ϙ(x⊕ y) ⇒ B(z, y) B(x, y)

Ϙ(z) Ϙ(x) Ϙ(z⊕ x) Ϙ(x⊕ x) B(z, x) B(x, x)

(2)
where the first map is induced by the strongly cocartesian cube

x⊕ x x⊕ y

x y

z⊕ x z⊕ y

z w

(id id) (a′ id)

(id b′) (a b)

If we can show that each of the two maps induce an equivalence of total fibres then we would have
shown that the first square in (1) is cartesian. Since Ϙ was 2-excisive, Ϙ sends this cube to a cartesian
cube in Sp, that is, the square

Ϙ(w) Ϙ(z)×
Ϙ(x) Ϙ(y)

Ϙ(z⊕ y) Ϙ(z⊕ x)×
Ϙ(x⊕x) Ϙ(x⊕ y)

is cartesian. By considering the horizontal fibres of this square and invoking (2.1) we get that the first
map of squares in (2) induces an equivalence of total fibres.

Now for the second map of squares in (2), we know by definition of B(−,−) = BϘ(−,−) that the
fibre is

Ϙ(z)⊕ Ϙ(y) Ϙ(x)⊕ Ϙ(y)

Ϙ(z)⊕ Ϙ(x) Ϙ(x)⊕ Ϙ(x)

which has trivial total fibre. And hence this map of squares also induces an equivalence on total
fibres. This completes the proof that the first square in (1) is exact.

To see that the right hand square in (1) is cartesian, just observe that by design B(−,−) is exact in
each variable and so we compute the total fibre of the right most square in (2) to be

B(cofib(b′), cofib(a′))

B(cofib(b′), y) B(z, y) B(x, y)

B(cofib(b′), x) B(z, x) B(x, x)

5

as required.

Corollary 2.3 (2-out-of-3 formula for Ϙ, I.1.1.21). Furthermore, applying to the case of z = 0 we get that
for an exact sequence x → y→ w in C the natural map from Ϙ(w) to the total fibre

Ϙ(w)→ fib
(

fib(Ϙ(y)→ Ϙ(x))→ fib(B(x, y)→ B(x, x))
)

is an equivalence.

Proof. This is just an easy consequence of (2.2) by setting z = ∗ in the left hand square of (1) which
yields

Ϙ(w) B(z, y) ' Ϙ(w) 0

Ϙ(z)×
Ϙ(x) Ϙ(y) B(z, x)×B(x,x) B(x, y) fib(Ϙ(y)→ Ϙ(x)) fib(B(x, y)→ B(x, x))

y y

as required.

We now come to one of the most important basic results that will be the bread-and-butter of this
story.

Proposition 2.4 (Characterisations of quadratics, I.1.1.13). Let Ϙ : Cop → Sp be a functor. The following
are equivalent and functors satisfying such are called quadratic.

(1) Ϙ is reduced 2-excisive.

(2) BϘ is bilinear and fib
(
Ϙ(−)⇒ (BϘ ◦ ∆)hC2

)
: Cop → Sp is exact.

(3) BϘ is bilinear and cofib
(
(BϘ ◦ ∆)hC2 ⇒ Ϙ(−)

)
: Cop → Sp is exact.

Proof. Since Sp is stable the property of being reduced and 2-excisive is closed under limits and
colimits. Hence (2) and (3) implies (1) since exact functors and diagonal restrictions of bilinears
are reduced and 2-excisive by HA.6.1.3.5 (additivity of excisiveness). For the other direction, we
invoke HA.6.1.3.22 to say that the cross-effect is bilinear. On the other hand, applying cross-effects
and noting that it preserves (co)limits we see that the cross-effect on fib

(
Ϙ(−) ⇒ (BϘ ◦ ∆)hC2

)
and

cofib
(
(BϘ ◦ ∆)hC2 ⇒ Ϙ(−)

)
are trivial, and so by the characterisation (2.2) we see that the fibre and

cofibre are reduced 2-excisive with trivial cross-effects, and so exact.

Remark 2.5. In light of this, we should think of 2-excisives as quadratic affine maps and 1-excisives
as affine maps. If furthermore reduced then linear. Note that 1-excisive implies 2-excisive.

Proposition 2.6 (Characterisations of (co)homogeneity, I.1.3.1). Let Ϙ : Cop → Sp be a quadratic functor.
Then the following conditions are equivalent for being homogeneous.

(1) The map BϘ(x, x)hC2 → Ϙ(x) is an equivalence for every x ∈ C.

(2) Ϙ is equivalent to a quadratic functor of form Ϙq
B for B ∈ Funs(C)

(3) The spectrum Nat(Ϙ, L) is trivial for any linear L.

Dually we have the characterisations for cohomogeneous functors.

Proof. That (1) implies (2) is immediate. That (2) implies (3) is an immediate consequence of (3.4),
since LϘ ' ∗ by definition of the linear part. That (3) implies (1) is again a consequence of (3.4) since
by definition (1) is saying precisely that LϘ ' ∗.

6

3 Adjunctions galore

Lemma 3.1 (Bireduction adjunction, I.1.1.3). We have a biadjunction

BiFun(C) Fun∗(Cop × Cop, Sp)

(−)red

(−)red

Proof. Immediate from the retraction and inclusion maps.

Corollary 3.2 (Cross-effect adjunction, I.1.1.8). The biadjunction ∆ : Cop � Cop×Cop :
⊕

together with
the bireduction biadjunction induces a biadjunction

Fun∗(Cop, Sp) Fun∗(Cop × Cop, Sp) BiFun(C)
⊕∗ (−)red

∆∗

where the top composite is precisely B(−) by definition. The diagonal ∆x : x → x⊕ x and fold∇x : x⊕ x → x
induce the counit and unit

B∆
Ϙ
⇒ Ϙ⇒ B∆

Ϙ

respectively.

Corollary 3.3 (Quadratic-bilinear biadjunction, I.1.1.18). We have a biadjunction

Funq(C) Funb(C)
B(−)

∆∗

∆∗

with unit and counit given by the natural maps

BϘ(x, x)→ Ϙ(x)→ BϘ(x, x)

Proof. This is just by applying (3.2): consider the diagram

Fun∗(Cop, Sp) BiFun(C)

Funq(C) Funb(C)

B(−)

∆∗

∆∗

B(−)

∆∗

∆∗

where the B(−) square commutes by (2.4) and the ∆∗ squares commute by (1.9).

Proposition 3.4 (Quadratic-(co)linear adjunctions, I.1.1.24). The natural Ϙ ⇒ LϘ and cLϘ ⇒ Ϙ exhibits
the unit (resp. counit) of the adjunctions

7

Funq(C) Funex(Cop, Sp)

cL(−)

L(−)

Proof. We show the linear part. We just need to show that the mapping spectrum from the fibre
(B∆
Ϙ
)hC2 of Ϙ⇒ LϘ to any exact functor is zero. So let f be an exact functor.

map((B∆
Ϙ
)hC2 , f) ' map(∆∗BϘ, f)hC2 ' map(BϘ, B f)

hC2 ' 0

where the second equivalence is by (3.3) and B f ' 0 for f exact by (2.2).

Corollary 3.5 (Quadratic-symmetric bilinear adjunction, I.1.3.3). We have an adjunction

Funq(C) Funs(C)
B(−)

Ϙ
q
(−)

Ϙ
s
(−)

where both Ϙq and Ϙs are fully faithful, and their essential images are precisely the homogeneous and cohomo-
geneous functors, respectively.

Proof. We will argue in the homogeneous case, and the other will then be similar. We will show two
things in turn: (a) that Ϙq

(−) : Funs(C)→ Funq(C) is fully faithful with the prescribed essential image;

(b) that we have an adjunction Ϙq
(−) a B(−). To see (a), we factor it as

Ϙ
q
(−) : Funs(C) ϕ−→ Funhom(C) ⊆ Funq(C)

where Funhom(C) is the full subcategory spanned by homogeneous quadratics. We have this factori-
sation by the characterisation of homogeneity (2.6). On the other hand, the formation of cross-effects

ψ : Funhom(C) ⊆ Funq(C)
B(−)−−→ Funs(C)

gives a right inverse ϕ ◦ ψ ' id by (2.6), whereas (1.10) gives that ψ ◦ ϕ ' id, as required.

Finally to see (b), standard adjunction yoga says that we need to show that the natural comparison
ε : Ϙq

BϘ
=⇒ Ϙ induces an equivalence

Natb(β, BϘ)
Ϙ

q
(−)−−→ Natq(Ϙ

q
B, Ϙq

BϘ
)

ε∗−→ Natq(Ϙ
q
B, Ϙ)

for all β ∈ Funs(C). Now the first map is an equivalence by (a). On the other hand, the second
map is also an equivalence since cofib(Ϙq

BϘ
⇒ Ϙ) ' LϘ, and Natq(Ϙ

q
B, LϘ) ' ∗ by (2.6). And so we’re

done.

4 The quadratic stable recollement

Definition 4.1. A Bousfield localisation is a left adjoint whose right adjoint is fully faithful.

8

Fact 4.2 (II.A.1). Let C,D, E ∈ Ĉat
ex
∞ and C f−→ D p−→ E are functors with trivial composite. Then

(1) It is a fibre sequence in Ĉat
ex
∞ iff f was fully faithful with essential image the kernel of p.

(2) If p : D → E is a Bousfield localisation and the inclusion Im(f) ⊆ ker(p) is an equivalence,
then the sequence is a cofibre sequence in Ĉat

ex
∞ .

Definition 4.3 (II.A.2.10). Let C f−→ D p−→ E be functors between stable categories with trivial com-
posite. Then we say that it is a stable recollement if the following conditions hold:

(A) It is a fibre sequence

(B) f admits a left adjoint (that is, it participates in a Bousfield localisation)

(C) p admits a fully faithful right adjoint (that is, it is a Bousfield localisation).

Remark 4.4. By II.A.2.5, a stable recollement in fact always complete automatically to a diagram of
adjunctions

C D E
f

ḡ

g

p

q

q̄

where each layer is a bifibre sequence of stable categories. These things are called split Verdier se-
quences in the papers, and so “stable recollement = split Verdier sequences.” The following lemma
clarifies the different guises of stable recollement in different parts of the literature and each descrip-
tion has their uses.

Lemma 4.5 (Characterisations of stable recollement). Suppose we have Bousfield localisations in Ĉat
ex
∞

C D E
f

ḡ

p

q

such that p ◦ f ' ∗. Then the following conditions are equivalent:

(1) This data is a stable recollement, that is, C f−→ D p−→ E is a fibre sequence.

(2) The diagram is a pullback

idD qp

f ḡ f ḡqp

(3) p and ḡ are jointly conservative, that is, if d ∈ D is such that p(d) ' 0 ' ḡ(d), then d ' 0.

Moreover in this case, we get a canonical identification

cofib
(
q̄p⇒ id⇒ qp

) '−→ f ḡqp

9

Proof. We omit the proof of the last statement: it is not hard, but tedious. We will show (3) ⇔ (1)
and (2)⇔ (3). To see (3)⇒ (1), let d ∈ ker(p) and consider its unit map d → f ḡ(d). Note that this
becomes an equivalence upon applying p and ḡ, and so by (3), we get that it is an equivalence, and
so d ∈ Im(f) as required. For (1) implies (3), if p(d) ' 0 then (1) says that d ' f (c) some c ∈ C. On
the other hand, we have 0 ' ḡ(d) ' ḡ f (c) ' c, and so d ' 0 as required. For (2)⇒ (3), let d ∈ D
be such that p(d) ' 0 ' ḡ(d). Then applying the pullback square above to d shows that the bottom
right corners of the square are zero, and so d ' 0 also. Finally, to see (3) implies (2), consider the
completed diagram by taking horizontal fibres

F idD qp

f ḡF f ḡ f ḡqp

We want to show that the left vertical is an equivalence by using joint conservativity. Now pF ' 0 by
definition of F being the fibre of idD ⇒ qp so that pF → pF f ḡ is an equivalence. On the other hand,
ḡF → ḡ f ḡF is of course an equivalence, and so we’re done.

Example 4.6 (Arithmetic square at p). We have Bousfield localisations (−)[1/p] : Sp→ Sp[1/p] and
(−)∧p : Sp → Sp∧p . Then the kernel of (−)∧p is precisely the image of (−)[1/p] since if X∧p ' 0 then
X/p ' 0 since p-completeness is tested by smashing with S/p. On the other hand, we have the

cofibre sequence X
p−→ X → X/p, and so X

p−→ X is an equivalence. But Sp[1/p] ⊆ Sp is precisely the
subcategory of spectra on which p acts invertibly. This gives us the well-known arithmetic square

X X∧p

X[1/p] X∧p [1/p]

y

Example 4.7 (Genuine Cp-equivariance). We know that we have Bousfield localisations ΦCp : SpCp →
Sp and fgt : SpCp → Fun(BCp, Sp). By viewing these as spectral Mackey functors, we know that
Im(ΦCp) ⊆ SpCp are precisely those spectral Mackey functors with trivial value at the orbit Cp/e. On
the other hand, fgt is given by evaluating at the orbit Cp/e, and so clearly the inclusion Im(ΦCp) ⊆
ker(fgt) is an equivalence. This gives us the equivariant fracture square

XCp ΦCp X

XhCp XtCp

y

Theorem 4.8 (Quadratic stable recollement, I.1.3.12). We have the stable recollement

Funex(Cop, Sp) Funq(C) Funs(C)

L(−)

cL(−)

B(−)

Ϙ
q
(−)

Ϙ
s
(−)

In particular by standard recollement fractures we have the cartesian square for any Ϙ ∈ Funq(C)

10

Ϙ LϘ

Ϙ
s
BϘ L

Ϙ
s
B
Ϙ

y

where the right vertical is the linearisation of the left. Moreover the bottom map is equivalent to

BϘ(X, X)hC2 → BϘ(X, X)tC2

the usual Tate map.

Proof. To see the stable recollement, just note that (2.2) gives axiom (A); (3.4) gives axiom (B); (3.5)
gives axiom (C). We only need to prove the last assertion. By general principles of stable recollement
we know that L

Ϙ
s
B
Ϙ

is computed as the cofibre of the adjunction counit

Ϙ
q
B ' Ϙ

q
B
Ϙ

s
B
⇒ Ϙs

B

Now, by unwinding adjunctions, we have

B(−) : Nat(Ϙq
B, Ϙs

B)
'−→ Nat(B, B)

hence since B(−) preserve all limits and colimits, it preserves norm maps and so to show that the
natural transformation in question is given by norm map it’s enough to show that it has the same
image as the norm map under B(−). On the one hand, again by an easy unwinding of adjunctions,
the image of the map of interest under the functor B(−) is the identity natural transformation B⇒ B.
On the other hand, applying B(−) to the norm (B∆

Ϙ
)hC2 ⇒ (B∆

Ϙ
)hC2 and commuting it with (−)hC2 and

(−)hC2 we obtain
(B⊕ B)hC2 → (B⊕ B)hC2

which is the identity on B by the general theory on norms, and so we’re done.

Remark 4.9. Just to sum up the situation, we have the schematic diagram

cLϘ(x) cLϘ(x)

BϘ(x, x)hC2 Ϙ(x) LϘ(x)

BϘ(x, x)hC2 BϘ(x, x)hC2 BϘ(x, x)tC2

' linear

'
homogeneous

' cohomogeneous

norm

5 Hermitian and Poincare structures

Definition 5.1 (I.1.2.1). A hermitian category is a pair (C, Ϙ) where C is small stable and Ϙ is quadratic.
This can be organised into a large category Cath

∞ given by unstraightening Catex
∞ → Ĉat∞ :: C 7→

Funq(C). Unwinding definitions, we see that a hermitian functor (C, Ϙ)→ (C ′, Ϙ′) consists of a functor
f : C → C ′ and a natural transformation η : Ϙ⇒ f ∗Ϙ′.

We now explore some categorified notions of non-degeneracies that will lead to the notion of Poincare
categories.

11

Construction 5.2 (The duality functor). Let B ∈ Funb(C) be bilinear. Suppose the curried functor

Cop → Funex(Cop, Sp) :: y 7→ B(−, y)

has the property that it lands in the representables. This functor then can be lifted to a functor

DR
B : Cop → C

so that we have
B(x, y) ' mapC(x, DR

B y)

Similarly for when the functor B(x,−) ' mapC(−, DL
Bx). Clearly if B was symmetric then it is right

non-degenerate iff left non-degenerate.

Definition 5.3 (Perfectness, I.1.2.8). If B ∈ Funns(C) then writing D : Cop → C and Dop for the
opposite, we see that

MapC(x, Dy) ' B(x, y) ' B(y, x) ' MapC(y, Dx) ' MapCop(Dopx, y)

and so Dop is the left adjoint to D. We define the duality evaluation to be the adjunction unit

ev : id⇒ DDop : C → C
A symmetric bilinear functor is called perfect if ev is an equivalence, and this implies DB : Cop → C
is an equivalence.

Definition 5.4 (I.1.2.2). We say that a bilinear functor B is right (resp. left) non-degenerate if B(−, y)
(resp. B(x,−)) are representables. If it’s both left and right non-degenerate, we say it’s non-degenerate.
In this case the resulting dualities are of course adjoint to each other as DL

B : C � Cop : DR
B . We say

that a quadratic functor Ϙ : Cop → Sp is non-degenerate if the bilinear part BϘ is non-degenerate. We
denote by

Funnb(C) ⊆ Funb(C) Funns(C) ⊆ Funs(C) Funnq(C) ⊆ Funq(C)
for the full subcategories spanned by non-degenerates.

Lemma 5.5 (I.1.2.4). Let (C, Ϙ), (C ′, Ϙ′) be two non-degenerate hermitian categories with associated dualities
DϘ : Cop → C and D

Ϙ
′ : C ′op → C ′. Let f , g : C → C ′ be exact functors. Then there is an equivalence

Nat(BϘ, (f × g)∗B
Ϙ
′) ' Nat(f DϘ, D

Ϙ
′gop)

of spectra of natural equivalences.

Proof. We have
Nat(BϘ, (f × g)∗B

Ϙ
′) ' Nat((f × 1)!BϘ, (1× g)∗B

Ϙ
′)

By hypothesis, for fixed y ∈ C we have

BϘ(−, y) ' mapC(−, Dy)

On the other hand, by easy adjunction yoga we see that left Kan extensions commute with repre-
sentables and so we have

(f × 1)!mapC(−, Dy) ' mapC ′(−, f Dy)
Hence in total we have

Nat(BϘ, (f × g)∗B
Ϙ
′) ' mapFun(Cop×Cop,Sp)((f × 1)!BϘ, (1× g)∗B

Ϙ
′)

' mapFun(Cop,Fun(Cop,Sp))((f × 1)!BϘ, (1× g)∗B
Ϙ
′)

' lim
(x→y)∈TwAr(Cop)

mapFun(Cop,Sp)((f × 1)!BϘ(−, x), (1× g)∗B
Ϙ
′(−, y))

' lim
(x→y)∈TwAr(Cop)

mapFun(Cop,Sp)(mapC ′(−, f Dx), mapC ′(−, D′gy))

' lim
(x→y)∈TwAr(Cop)

mapC ′(f Dx, D′gy)

' Nat(f D, D′gop)

12

as required.

This allows us to frame the following important definitions.

Definition 5.6 (Duality preservation). Given a hermitian functor (f , η) : (C, Ϙ)→ (C ′, Ϙ′) I.1.1.6 says
(f × f)∗B

Ϙ
′ ' B f ∗Ϙ′ , so we get transformation

βη : BϘ ⇒ (f × f)∗B
Ϙ
′

We then denote by
τη : f DϘ ⇒ D

Ϙ
′ f op

the natural transformation corresponding to the data Bη by (5.5) and the equivalence (f × f)∗B
Ϙ
′ '

B f ∗Ϙ′ . We say that a hermitian functor is duality-preserving if this τη is an equivalence.

Remark 5.7. Note that all these non-degeneracy conditions depend only on the (symmetric) bilinear
part of a quadratic functor.

Definition 5.8 (I.1.2.8). A hermitian structure Ϙ is called Poincare if BϘ is perfect. We let Catp
∞ ⊆ Cath

∞
denote the non-full subcategory spanned by Poincare categories and duality-preserving functors. Let
Funp(C) ⊆ Funq(C) denote associated non-full subcategory.

Remark 5.9 (Structure vs property). Recall that this means that a Hermitian structure is Poincare if it
is perfect non-degenerate. These last two adjectives are properties and so Hermitian is structure but
Poincare is property.

Observation 5.10. The constructions Ϙq
B and Ϙs

B of (1.10) given a symmetric bilinear B are Poincare iff
B is perfect.

Construction 5.11 (Perfect duality). Recall that we have a C2-action on Catex
∞ given by taking oppo-

sites, and the (homotopy) fixed points of this are precisely small stables C together with an equiv-
alence Cop ' C and higher coherences. In particular, by the duality functor construction we get a
forgetful functor

Catp
∞ → (Catex

∞)op :: (C, Ϙ) 7→ (C,DϘ)

Example 5.12. Here’s the archetypal example to keep in mind. Let R be a commutative ring and
C = Dperf(R). Then we have a natural symmetric bilinear functor BR : Cop × Cop → Sp given by

BR(X, Y) := HomR(X⊗R Y, R)

and we define B−R to be the one where the symmetry equivalence B−R(X ⊗R Y, R) '−→ B−R(Y ⊗R
X, R) is given by minus the one of BR. While (B∆

R)hC2 and (B∆
R)

hC2 give the classical quadratic and
symmetric forms, (B∆

−R)hC2 and (B∆
−R)

hC2 give the anti-quadratic and anti-symmetric forms.

Definition 5.13 (Shifts of quadratics). For Ϙ : Cop → Sp a quadratic and n ∈ Z we denote by

Ϙ
[n](x) := Σn

Ϙ(x)

and call it the n-fold shift.

Observation 5.14. Note that we have following easy identifications

(1) B
Ϙ
[n] ' ΣnBϘ

(2) L
Ϙ
[n] ' ΣnLϘ

(3) D
Ϙ
[n] ' ΣnDϘ

13

In particular, Ϙ is non-degenerate or perfect iff Ϙ[n] is, for all n. Hence a Hermitian category (C, Ϙ) is
Poincare iff (C, Ϙ[n]) is for all n.

Warning 5.15 (Paragraph after I.1.2.18). In general it’s not true that the pullback of a perfect quadratic
functor is perfect, and so we can’t pullback Poincare structures willy-nilly. Consider the example of

Mod(HZ)perf f :=HQ⊗−−−−−−−→ Mod(HQ)perf. The pullback f ∗Ϙs
Q is not even non-degenerate. To see this,

recall from (1.10) that B
Ϙ

s
Q
(x, y) ' mapQ(x⊗ y, Q). Hence we get for x, y ∈ Mod(HZ)perf

f ∗BQ(x, y) := mapQ(Q⊗ x⊗ y, Q) ' mapZ(x⊗ y, Q) ' mapZ(x, Q⊗ DZ(y))

where Q⊗DZ(y) ∈ Mod(HZ) is no longer a compact object, so f ∗BQ(−, y) cannot be representable.

Definition 5.16. Let (C, Ϙ) be a hermitian category and x ∈ C.

(1) A hermitian form on x is defined to be a point q ∈ Ω∞
Ϙ(x). We can then get the category of

hermitian objects in (C, Ϙ) He(C, Ϙ) to be the unstraightening of Ω∞
Ϙ : Cop → An. We define

Fm(C, Ϙ) := He(C, Ϙ)' the anima of hermitian objects.

(2) If Ϙwas non-degenerate then we can consider

Ω∞
Ϙ(x)→ Ω∞BϘ(x, x) = MapC(x, DϘx)

coming from (1.8). In this case, a Hermitian object (x, q) determines q# : x → DϘx. We say that
a Hermitian form is Poincare if q# is an equivalence. Let Pn(C, Ϙ) ⊆ Fm(C, Ϙ) denote the full
subgroupoid of Poincare objects. In fact, it’s easy to see that we can promote this to a functor
Pn : Catp

∞ → An. We should view these as hermitian forms with a unimodularity condition.

Warning 5.17. Catp
∞ ⊆ Cath

∞ is not full since we need that the hermitian functors preserve dualities.

14

	Quadratics, bilinears, linears
	Recognition criteria
	Adjunctions galore
	The quadratic stable recollement
	Hermitian and Poincare structures

