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Hermite and Poincaré. Define the notion of a quadratic functor [CDHT20b, 1.1.4],
its associated cross-effects and polarization, and discuss examples of them by relating
them to classical hermitian forms on vector spaces [CDH*20b, 1.1.16-17] and perform
the computation in [CDH'20b, 1.1.21]. Time permitting, explain Goodwillie calculus
and the notion of n-excisive functors to contextualize the discussion. Define the no-
tions of Hermitian and Poincaré oco-categories; define also the associated categories
with duality. Explain the notion of recollement and use this language to prove the
classification theorem for Hermitian and Poincaré structures [CDH20b, 1.3.12-13].
Examplefest, Poincaré objects. Recall the usual theory of various hermitian forms
on vector spaces (if this is not done in the previous talk). Discuss in detail the examples
[CDH*20b, 1.2.12-1.2.15,1.2.18]. Discuss the notion of a Poincaré object as an object
in € with a certain hermitian form on it subject to a unimodularity/nondegeneracy
condition [CDH™20b, Definition 2.1.3], discuss the important example arising from a
compact orientable manifold [CDH20b, 2.1.8]. Recall the classical notion of a hy-
perbolic form on a vector space. Motivate and define hyperbolic Poincaré structures
[CDH™20b, 2.2.1] and its categorification [CDH*20b, 2.2.2]; skip the Cy-refinement but
discuss the notion of isotropic, Lagrangian and metabolic objects [CDH*20b, Definition
2.3.1] and give lots of examples [CDHT20b, 2.3.2-2.3.4].
Lo and GWj. Introduce the Witt ring of symmetric bilinear forms on a commutative
ring R modulo “splits forms” [HM73, 1.7]; introduce its additive and multiplicative
structure. Prove that, over fields, a Witt class is uniquely determined by its anisotropic
component [HM73, I11.1.7]. Do a parallel discussion of Grothendieck-Witt theory and
discuss that Witt theory is obtained from Grothendieck-Witt theory by modding out
the ideal generated by the hyperbolic form. Perhaps mention the relationship with
arithmetic geometry via Milnor’s conjecture. Give examples of some known Witt rings
of fields following [HM73, III]. Use the above to motivate the definition of the L-groups
[CDH™20b, 2.3.11] and the Grothendieck-Witt groups [CDH"20b, 2.4.1]. Explain thor-
oughly the picture in [CDH'20b, 2.3.8] and the square (58). Prove the algebraic Thom
isomorphism [CDH'20b, 2.3.20].
Poincaré structures Examplefest (Ben Antieau). To motivate this, talk about
work of Kato and Sah on the difference between quadratic Witt theory and symmetric
Witt theory in characteristic two [Sah72, Kat82]. Then, discuss examples of Poincaré
structures. First, define modules with involutions and the associated symmetric and
quadratic hermitian structures [CDH"20b, 3.1.1,3.1.5]. Discuss modules with genuine
involution [CDH™20b, 3.2.2-3.2.6]. One of the main points of the present work is
the tower [CDH'20b, 3.2.7] interpolating between symmetric and quadratic Poincaré
structures; highlight this. Prove periodicity results for these structures [CDH™20b,
3.4.2, 3.4.10,3.4.11]. Describe the universal Poincaré oo-category [CDHT20b, 4.1.3].
The rest of the talk is up to the speaker to play around with all the examples in
[CDH™T20b, 4]. For geometric topologists, perhaps they should look at [CDH™*20b, 4.4]
and discuss “visible Poincaré structures” while algebraists might explain [CDH™20b,
2.
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Talk 5 PV sequences. We now turn to [CDH'20c]. I advise the reader to look back
to [CDH"20b, 6] as necessary for the formalism of the oo-category of Poincaré oo-
categories and use them as necessary. Define Poincaré-Verdier (PV) sequences [CDH*20c,
1.1.1], squares [CDH*20b, 1.1.5], additive and localizing functors [CDH*20b, 1.5.4] and
characterize inclusions and projections [CDH*20b, 1.1.5]. Discuss two important exam-
ples: the metabolic fiber sequence [CDH'20b, 1.2.5] and localization of rings [CDH™20b,
1.4.8]. Time permitting, give more examples [CDH*20b, 1.4]. It might be a good idea
to motivate these via their analogs in algebraic K-theory /stable co-categories.

Talk 6 Hermitian Q, Additivity and GW (Jay Shah) Recall that Q-construction for
algebraic K-theory as motivation; state that we are working towards constructing
Hermitian/GW-theory in the same fashion. Proceed to define the Hermitian Q-construction
[CDH™20c, 2.1]; concentrate on explaining the following aspects: (1) that it is a com-
plete Segal object, (2) it preserves Poincaré structures; draw the simplices(!) and
explain why it deserves to be called “cobordism” category. (3) its face maps are PV-
projections. Extract the cobordism category as in [CDH'20c, 2.3], explain all the
examples as in [CDH'20c, 2.3.3]. At this moment, we can define the GW-space: take
the first equivalence of [CDH"20c, 4.1.4] as definition. Now state that the goal is to
deloop into the Grothendieck-Witt spectrum: the key to this is the additivity theorem
[CDH"20c, 2.5.1]. Mention the K-theoretic version of this result, noting that it is a
special case [CDH'20c, 2.7] but do not prove the result. Use it to prove delooping and
group completion theorems for the Grothendieck-Witt space [CDH™20c, 3.3.4, 3.3.6].
Define the Grothendieck-Witt spectrum [CDH'20c, 3.4.3, 4.2] and reconcile the defini-
tion of the Grothendieck-Witt space from the previous talk with the one coming from
group completion. Prove (at this point quite easily) the Bott-Genauer sequence and
Karoubi’s fundamental theorem [CDH'20c, 4.2].

Talk 7 L-theory and the fundamental square As motivation, recall that fiber square ex-
pressing genuine fixed Co-fixed points in terms of geometric, Tate and homotopy fixed
points. Then state the main result [CDH"20c, 3.6.7] and the associated recollement
[CDH"20b, 3.6.8]; explain the punchline that: Hermitian K-theory = K-theory + L-
theory glued along something. In particular, if we pretend to know the K-theory of
something, then what is left is to know L-theory. Of course this entails defining what
a bordism invariant functor is [CDH"20c, 3.5]. Define the bordification functor via the
p-construction [CDH"20c, 3.6.12] starting with these “ad’s” [CDH*20c, 3.6.10] and
define the L-theory spectrum [CDH*20c, 4.4]. Prove [CDH"20c, 4.4.2], Lurie’s local-
ization theorem for L-theory which expresses higher L-groups as L of something else;
emphasize that this adds to the computability of L-theory. Mention the universal prop-
erty of L-theory [CDH*20c, 4.4.12]. At the end give a “high-level” overview of how one
can produce the Real algebraic K-theory Cs-spectrum. Define genuine Cs-equivariant
refinements of quadratic functors [CDH'20b, 7.4.17] and hyperbolic Mackey functors
[CDH™20b, 7.4.18]. use this to define the real algebraic K-theory spectrum [CDH™20c,
4.5.2] and prove genuine Karoubi periodicity [CDH20c, 3.7.7] and discuss its conse-
quences.

Talk 8 Surgery and the L-theory of fields Begin by explaining geometric surgery [CDH*20c,
2.4.2] and explain how surgery is a way to produce cobordisms. Mention that surgery,
in the context of L-theory, is a way to find good representative of abstract elements;
this will be the content of this talk and the next. Discuss the surgery equivalence
[CDH'20c, 2.4.3], mention [CDH"20c, 2.4.5] but not necessarily in any detail. Now
we use the technology we have developed to do something quite concrete: go through
Lectures 11-13 in Lurie’s notes to compute the L-theory of fields. One might need the
exposition of surgery and Lagrangian surgery from paper 3 [CDH'20a, 1.1.13-15]

Talk 9 More surgery This is the start of the third paper [CDH'20a]. The goal are two
identifications:
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(a) the identification of genuine symmetric L-groups with the L-groups of short com-
plexes [CDH'20a, 1.2.18]; and
(b) the L-groups of regular coherent rings in a range [CDH*20a, 1.3.7].
Roughly proceed as follows: define m-quadratic Poincaré structures [CDH'20a, 1.1.2]
and L-groups with connectivity conditions [CDH*20a, 1.2.1] then identify the L-groups
of an m-quadratic Poincaré structure with quadratic L-groups in a range [CDH™20a,
1.2.3, 1.2.8]. Gather the results to get [CDH"20a, 1.2.18]. Next, define r-symmetric
Poincaré structures and do symmetric surgery [CDH20a, 1.3.1, 1.3.4] and identify
the symmetric L-groups for a duality compatible with a t-structure [CDH*20a, 1.3.3]
and then do the computation in [CDH'20a, 1.3.7]. There is a lot of material here so
pick and choose whichever highlights the idea that L-theory is computable via surgery
techniques!
The L-theory of Z We can now attempt to compute the Grothendieck-Witt/L-theory
of Dedekind domains. Discuss the homotopy limit problem [CDH'20a, 3.1.1,3.1.6].
Then sketch the proof of [CDH'20a, 3.1.6] as follows: 1) prove dévissage [CDH™20a,
2.1.8] and deduce the localization sequence [CDH'20a, 2.1.9], identify the bound-
ary map [CDH'20a, 2.2.1]. Though not strictly necessary prove rigidity for qua-
dratic L-groups [CDH*20a, 2.1.13]. Discuss computational consequences about the
Grothendieck-Witt groups of the integers [CDHT20a, 3.2].
Quadratic-symmetric duality The spectra L®(Z) and L9(Z) are Anderson dual as
L#(Z)-modules. This is a theorem of Hebestreit, Land and Nikolaus [HLN21]. Explain
this paper.
Quadratic trace methods (Jay Shah) Discuss the quadratic enrichment of the
Dundas-Goodwillie-McCarthy theorem due to Harpaz-Nikolaus-Shah.
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