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Let (C, Ϙ) be a Poincaré∞-category. Recall that we defined the Grothendieck–Witt group GW0(C, Ϙ) to be
the quotient of the commutative monoid π0(Pn(C, Ϙ)) of Poincaré objects by the relation (x, q) ∼ (hyp(w))
for all (x, q) that admit a Lagrangian w x. Our goal in these notes is to define space and spectrum level
enhancements of the Grothendieck–Witt group. Let’s first recall how this is done for the K-group of a stable
∞-category by means of the Q-construction.

0.1. Definition. Let C be a stable ∞-category. The Q-construction is the ∞-category Span(C) of spans in
C.1

We may then define the K-theory space K(C) to be Ω|Span(C)|, the loop space on the classifying space of
the Q-construction. Stated more precisely, our first goal in these notes is to define a hermitian enhancement
of the ∞-category Span(C), where we equip objects and spans with certain Poincaré structure.

1. The hermitian Q-construction

Recall the twisted arrow ∞-category TwAr(K) has objects arrows [i j] in K and morphisms

i j

i′ j′

so that morphisms are covariant in the source and contravariant in the target. For example, a picture of the
twisted arrow category TwAr(∆2) is given by

02

01 12

00 11 22.

1.1. Definition. Let C be a stable ∞-category. We define Qn(C) to be the stable ∞-category given by the
full subcategory of Fun(TwAr(∆n),C) on those functors that send all squares to cartesian squares.

1In the setting of stable ∞-categories, no conditions on the spans are imposed. This stands in contrast to Quillen’s original

Q-construction which was defined in the context of exact categories.
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1.2. Remark. If n = 0, then Q0(C) = C. If n = 1, then Q1(C) is the∞-category whose objects are spans in C

(which should not be confused with Span(C) itself!). If n = 2, then Q2(C) is the∞-category of compositions
of spans in C, etc.

Now, it is more or less clear that Q•(C) defines a Segal object in ∞-categories, and ιQ•(C) defines a
complete Segal space. The ∞-category associated to this complete Segal space is then Span(C), i.e., it is the
Q-construction on C.

1.3. Definition. Let (C, Ϙ) be a hermitian ∞-category. We define Qn(C, Ϙ) to be the hermitian ∞-category
with underlying stable ∞-category Qn(C), and with quadratic functor Ϙn : Qn(C)op Sp defined by

Ϙn(c••) = Ϙ(c00)×Ϙ(c01) ...×Ϙ(c(n−1)n) Ϙ(cnn).

1.4. Example. Let us unpack the example of Q1(C, Ϙ). In this case, if (C, Ϙ) is Poincaré with duality D then
so is Q1(C, Ϙ) with duality

D1 : (x y z) 7→ (Dx Dx×Dy Dz Dz).

A Poincaré object in Q1(C, Ϙ) is then given by a hermitian object

[x α w
β

x′, q = (q, q′, η : α∗q ' β∗q′) ∈ Ω∞(Ϙ(x)×Ϙ(w) Ϙ(x
′))]

such that the map q] given by

x w x′

Dx Dx×Dw Dx′ Dx′

q] (q])01 q′]

is levelwise an equivalence (where (q])01 is defined by the image of η under Ω∞Ϙ(w) Ω∞B(w,w) =
Map(w,Dw)). In other words, (x, q) and (x′, q′) are Poincaré objects of (C, Ϙ) and the span is a cobordism
thereof.

Note that if x′ = 0, then such a hermitian object in Q1(C, Ϙ) is precisely the data of an isotropic object
over (x, q), and the condition for the hermitian object to be Poincaré corresponds to the condition that the
isotropic object be a Lagrangian, i.e., that

w x ' Dx Dw

is an exact sequence (with nullhomotopy furnished by η).

Let us also explain the geometric intuition behind this notion. Suppose (C, Ϙ) = (Dp(Z), Ϙ
s[−n]
Z ). Then

examples of Poincaré objects are furnished by (C∗(M), q[M ]) for closed oriented n-manifolds M , where q[M ]

is defined by cup-product and pairing against the fundamental class. A cobordism from (C∗(M), q[M ]) to
(C∗(N), q[N ]) can then be defined by an oriented cobordism W from M to N , where the fundamental class
[W ] determines a path from q[M ] to q[N ]. Here, we invoke Lefschetz duality to see that the Poincaré condition
holds.

The phenomenon that Q1(C, Ϙ) is Poincaré if (C, Ϙ) is extends more generally to all n:

1.5. Lemma. Suppose (C, Ϙ) is Poincaré. Then Qn(C, Ϙ) is Poincaré.

Proof. Let In ⊂ TwAr(∆n) be the subposet on ii and i(i+1). Note that the restriction Qn(C) Fun(In,C)
is an equivalence with inverse given by right Kan extension. We may then identify (Qn(C), Ϙn) with the
cotensor (C, Ϙ)In in hermitian ∞-categories, and this is Poincaré since In is the category of simplices of the
simplicial complex given by sticking n closed intervals end to end.

Note also that the duality Dn on (C, Ϙ)In is given by

[c00 c01 ... c(n−1)n cnn] 7→
[Dc00 Dc00 ×Dc01 Dc11 ... Dc(n−1)(n−1) ×Dc(n−1)n

Dcnn Dcnn]

�

It should now be clear that Poincaré objects of Qn(C, Ϙ) are given by n-fold compositions of cobordisms.
We next consider the functoriality in [n] ∈ ∆. Suppose (C, Ϙ) is Poincaré.

1.6. Lemma. For any map f : [n] [m] in ∆, the hermitian functor f∗ : Qm(C, Ϙ) Qn(C, Ϙ) is Poincaré.
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Proof. We first remark that the hermitian structure η : Ϙm ⇒ f∗Ϙn is given by the obvious map

Ϙ(x00)× ...× Ϙ(xmm) Ϙ(xf(0)f(0))× ...× Ϙ(xf(n)f(n))

natural in x•• ∈ Qm(C). Now by the formula for the duality, it is clear (at least intuitively) that the duality
commutes with f∗ if f is a degeneracy or an outer face map. The case of an inner face map is slightly more
complicated since f∗ will involve terms right Kan extended from Im. For example, if f = d1 : [1] ⊂ [2], we
observe that for x•• ∈ Q2(C), since

D(x00)×D(x02) D(x22) ' D(x11)

we get that

D(x00)×D(x02) D(x22) ' D(x00)×D(x01) D(x01)×D(x02) D(x12)×D(x12) D(x22)

' D(x00)×D(x01) D(x11)×D(x12) D(x22)

which is the main step in showing that D1f
∗ ' f∗D2, where both composites evaluate on x•• as

D(x00) D(x00)×D(x02) D(x22) D(x22).

�

1.7. Lemma. Let f : [n] [m] be an injection in ∆. Then f∗ : Qn(C, Ϙ) Qm(C, Ϙ) is a split Poincaré-
Verdier projection.

Proof. We spell out a few cases in low degrees. First consider f = d0 : [0] ⊂ [1] so that f∗ : Q1(C) C

sends [x w x′] to x′. Then f∗ admits a left adjoint L : c 7→ [0 = 0 c], and (L∗Ϙ1)(c) ' Ϙ(c).
Next consider f = d1 : [1] ⊂ [2]. Then f∗ admits a left adjoint

L : [x w x′] 7→ [x w = w = w x′]

and

(L∗Ϙ2)(x w x′) ' Ϙ(x)×Ϙ(w) Ϙ(x
′) ' Ϙ1(x w x′).

Finally consider f = d0 : [1] ⊂ [2]. Then f∗ admits a left adjoint

L : [x w x′] 7→ [0 = 0 x w x′]

and again it is clear that L∗Ϙ2 ' Ϙ1. �

1.8. Lemma. Q•(C, Ϙ) is a complete Segal object of Catp∞.

Proof. This follows by the known result for the underlying stable ∞-categories and the explicit formula for
the pullback of Poincaré ∞-categories (which is computed as a pullback of hermitian ∞-categories): recall
that given a span

(C, Ϙ)
(f, η)

(C′′, Ϙ′′)
(g, ξ)

(C′, Ϙ′)

the quadratic functor Ϙ̃ on C×C′′ C
′ is given by

(c, c′, f(c) ' g(c′)) 7→ lim

(
Ϙ(c)

ηc (Ϙ′′f)(c) ' (Ϙ′′g)(c′)
ξc′
Ϙ
′(c′)

)
.

For example, consider the claim that the commutative square

Q2(C, Ϙ) Q[1,2](C, Ϙ)

Q[0,1](C, Ϙ) Q[1](C, Ϙ)

is a pullback square of Poincaré ∞-categories. This translates to the assertion that

Ϙ2(c••) ' lim (Ϙ1(c0 ← c01 → c1) Ϙ(c1) Ϙ1(c1 ← c12 → c2)) ,

which is clear. �
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Recall that a square in Catp∞ is said to be split Poincaré-Verdier if its vertical morphisms are split
Poincaré-Verdier. We then say that a functor F : Catp∞ Spc is additive if it is reduced and sends
split Poincaré-Verdier squares to cartesian squares of spaces. (We note in passing that a simple argument
shows that after the reduced assumption the latter condition is equivalent to sending split Poincaré-Verdier
sequences to fiber sequences).

1.9. Example. Let F = Pn be the functor that sends (C, Ϙ) to its space of Poincaré objects. Then since
Pn is corepresented by (Spω, Ϙu), Pn is additive. Similarly, the functor F = Cr that sends (C, Ϙ) to ιC is
additive, being corepresented by Hyp(Spω).

Combining Lemma 1.8 and Lemma 1.7, we see that for any additive functor F : Catp∞ Spc, the
composite FQ•(C, Ϙ) : ∆op Spc is a Segal space. Moreover, if F preserves pullbacks then FQ•(C, Ϙ) is a
complete Segal space. In particular, we see that PnQ•(C, Ϙ) is a complete Segal space.

1.10. Definition. We define the F-cobordism ∞-category CobF(C, Ϙ) to be the∞-category associated to the

Segal space FQ(C, Ϙ[1]). If F = Pn, we write Cob(C, Ϙ) = CobPn(C, Ϙ).

To belabor the obvious, Cob(C, Ϙ) is the∞-category whose objects are given by Poincaré objects in (C, Ϙ[1])
and whose morphisms are given by cobordisms thereof.

1.11. Remark. We note that MapCobF(C,Ϙ)(0, 0) ' F(C, Ϙ). This makes Ω|CobF(C, Ϙ)| a good candidate for
the group completion of F, as we will see below.

1.12. Example. We run through a few different examples of cobordism categories.

1. If F = Cr, it is clear that CobCr(C, Ϙ) = Span(C).

2. For any additive functor F, we have CobF(Hyp(C)) ' SpanF◦Hyp(C), where SpanG(−) is defined
for any additive functor G : Catex

∞ Spc by analogy with Definition 1.10. Indeed, one observes
that QnHyp(C) ' HypQn(C) by juggling the universal properties, so FQ•Hyp(C) ' FHypQ•(C). In
particular, for F = Pn, since PnHyp = Cr we have Cob(Hyp(C)) ' Span(C).

3. We claim that Cob(C, Ϙs) ' Span(C)hC2 , where the C2-action on Span(C) ' |ιQ•C| is induced by
the levelwise action of DϘ on ιQ•C. This follows from two assertions: (i) the Poincaré structures on
Qn(C, Ϙs) are all symmetric; (ii) the space of Poincaré objects in (D,Φs) is given by ιDhC2 . (We
also use that limits of ∞-categories are computed levelwise in terms of complete Segal spaces since
the inclusion Cat∞ ⊂ sSpc is right adjoint.)

4. A basic feature of Span(C) is that Span(C) ' Span(C)op. The same holds true for the cobordism

category CobF(C, Ϙ) and for the same reason. Indeed, one has Q•(C, Ϙ) ' Qrev(•)(C, Ϙ) (the reversed
simplicial object) in view of the natural isomorphism TwAr(∆n) ∼= TwAr((∆n)op).

We are now ready to define the Grothendieck–Witt space of a Poincaré ∞-category.

1.13. Definition. Given a Poincaré ∞-category (C, Ϙ), we define its Grothendieck–Witt space to be

GW(C, Ϙ) := Ω|Cob(C, Ϙ)|,

where the basepoint is given by the zero Poincaré object.

1.14. Remark. Note that Q• preserves products. Since F is additive and geometric realization commutes
with products, it follows that |CobF(−)| preserves products. Now since Catp∞ is semiadditive, |CobF(−)|
canonically lifts to MonE∞ , the ∞-category of E∞-monoids in spaces. Therefore, GW canonically lifts to
GpE∞ , the ∞-category of grouplike E∞-monoids in spaces, which identifies with connective spectra. We
warn the reader that this spectrum should not be confused with the Grothendieck–Witt spectrum, which is
a canonical delooping of GW to a generally non-connective spectrum that we will define below.

Actually, we can compute π0|CobF(−)| to be a group so that |CobF(−)| is also valued in grouplike E∞
monoids:

1.15. Lemma. The Poincaré endofunctor (idC,− idϘ) of (C, Ϙ) induces the inversion on π0|CobF(−)|.

Moreover, we can explicitly compute π0|CobF(−)|:
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1.16. Proposition. We have a pushout square of commutative monoids

π0(F(Met(C, Ϙ[1]))) π0F(C, Ϙ[1])

0 π0

∣∣∣CobF(C, Ϙ)
∣∣∣

met

where the righthand vertical functor is induced by the inclusion of the degree 0 simplices.

Proof. As with any Segal space, we have that π0|CobF(C, Ϙ)| may be computed as the coequalizer of the face

maps d0, d1 : π0FQ1(C, Ϙ[1]) π0F(C, Ϙ[1]). Now consider the split Poincaré–Verdier sequence

Met(C, Ϙ[1]) Q1(C, Ϙ[1]) d1(C, Ϙ[1]).

Noting that the other face map yields the Poincaré functor met, after applying F we get the commutative
square in question as well as a surjective map f : coker(met) π0|CobF(C, Ϙ)|. Now, the commutative
monoid coker(met) is in fact a group by the same argument that we used to show the L groups are groups.

It remains to see that f is injective to conclude. So suppose x ∈ π0F(C, Ϙ[1]) is an element that maps to 0 in

π0|CobF(C, Ϙ)|. We then have w ∈ π0FQ1(C, Ϙ[1]) such that d0(w) = x and d1(w) = 0. Again, by applying

the additive functor F to the above split Poincaré–Verdier sequence we get a lift of w to π0F(Met(C, Ϙ[1])),
so x = 0 in coker(met). �

1.17. Example. If F = Pn, then Proposition 1.16 shows that π0|Cob(C, Ϙ)| ∼= L−1(C, Ϙ).

1.18. Corollary. |CobF(Met(C, Ϙ))| and |CobF(HypC)| are both connected spaces.

Proof. This follows from Proposition 1.16 once we note that met : Met(Met(C, Ϙ)) Met(C, Ϙ) and met :
Met(HypC) Hyp(C) are both split. �

2. Additivity

Let F : Catp∞ Spc be an additive functor.

2.1. Theorem (Additivity theorem). The functor |CobF(−)| : Catp∞ Spc is additive.

The additivity theorem can be deduced from the fibration theorem.

2.2. Theorem (Fibration theorem). Suppose (p, θ) : (D,Φ) (E,Ψ) is a split Poincaré–Verdier projection.
Then

(p, θ)∗ : CobF(D,Φ) CobF(E,Ψ)

is a bicartesian fibration.

Proof of Theorem 2.1. Given a bicartesian fibration f : X Y, note that all the fibers Xy are weak homotopy
equivalent to each other. Indeed, for all α : y y′, we have an adjunction

α! : Xy Xy′ :α∗,

and adjoint functors induce weak homotopy equivalences. Moreover, for any y ∈ Y, we get that

|Xy| |X|

{y} |Y|

is a pullback square of spaces. It then follows that for any split Poincaré–Verdier sequence

(C, Ϙ) (D,Φ) (E,Ψ),

if we can show that

CobF(C, Ϙ) CobF(D,Φ)

{0} CobF(E,Ψ)

5



is a pullback square of ∞-categories, then∣∣∣CobF(C, Ϙ)
∣∣∣ ∣∣∣CobF(D,Φ)

∣∣∣
{0}

∣∣∣CobF(E,Ψ)
∣∣∣

is a pullback square of spaces by Theorem 2.2. We now note that for a finite poset P such that the cotensor
(−)P preserves Poincaré ∞-categories, (−)P : Catp∞ Catp∞ is both a left and right adjoint and hence
preserves split Poincaré–Verdier sequences. Thus, Q• and hence FQ• are additive functors, so we have a
pullback square of Segal spaces, and an easy argument shows that this remains a pullback square upon
completion. �

In the remainder of this section we will partially sketch the proof of Theorem 2.2 when F = Pn. As a
warmup, we first explain how to prove the fibration theorem for K-theory. Let p : D E be a split Verdier
projection. Then we claim that

(i) p is a bicartesian fibration.
(ii) p∗ : Span(D) Span(E) is a bicartesian fibration.

For (i), let g a p a h be adjoints. Then for x ∈ D and an edge α : px y ∈ E, we claim that a p-cocartesian
lift of α is furnished by taking the map α in the pushout square

gpx gy

x y.

gα

εx

α

Indeed, this following directly from the mapping space criterion to be a p-cocartesian edge. Dually, given
x ∈ D and an edge β : y px ∈ E, a p-cartesian lift of β is given by the map β in the pullback square

y x

hy hpx.

β

η

hβ

For (ii), the idea is that given x ∈ Span(D) and a span px α w
β

y, a p∗-cocartesian lift is given by

x α α∗x = w
β

β!α
∗x = y (here α∗ and β! denote the cartesian and cocartesian transition functors

encoded by p), and dually for p∗-cartesian lifts.

2.3. Remark. This approach to the additivity theorem in K-theory via the fibration theorem for span
categories is due to Steimle. In addition, step (ii) (that is, the demonstration that for a bicartesian fibration,
the passage to span categories remains a bicartesian fibration) is Barwick’s ‘unfurling’ construction.

We now explain how to bring Poincaré structures into the game. Suppose given a Poincaré object (x, q)
in (D,Φ) and a cobordism

(px, θq) α (w, η)
β

(y, r)

(so η : α∗q ' β
∗
r and the induced map w Dx ×Dw Dy is an equivalence). We then want to endow the

p∗-cocartesian lift x α w
β

y with cobordism structure; this will be our (p, θ)∗-cocartesian lift of the
cobordism. First, for the hermitian structure on y, we use the following claim:

2.4. Lemma. For any p-cocartesian edge β : w y, we have that Φ(y) ' Φ(w) ×Ψ(pw) Ψ(py) is an
equivalence.

Given this, we then let r := (α∗q, r, η : α∗q = α∗q ' r) ∈ Ω∞Φ(y) be the hermitian form on y. Also, we
let η : α∗q ' β∗r be any lift of η.

We then verify the Poincaré condition on (x, q) α (w, η)
β

(y, r). For this, we use the following claim:
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2.5. Lemma. The duality D1 on Q1(D,Φ) preserves p∗-cocartesian spans.

Given this, we have that in the diagram

x w y

Dx Dx×Dw Dy Dy

q] η]

βα

r]

β′α′

the morphism α′ is p-cartesian and the morphism β′ is p-cocartesian. Now since q] is an equivalence by as-
sumption, it follows from the uniqueness of p-cartesian and p-cocartesian lifts that η] and r] are equivalences.
We deduce that the span is in fact a cobordism.

We omit the proof that this cobordism is actually a (p, θ)∗-cocartesian lift. Once one shows this, the
construction of (p, θ)∗-cartesian lifts is entirely dual.

Proof of Lemma 2.4. Since β is p-cocartesian, we have that y ' w ∪ε,gpw,gpβ gpy, i.e., gpw ' w ×β,y,ε gpy.
Since (p, θ) is a split Poincaré–Verdier projection, Φg ' Ψ. Thus, it suffices to see that Φ of the square in
question is cartesian. This holds if and only if BΦ(cof(gpβ), cof(ε)) = 0. But we have that

BΦ(cof(gpβ), cof(ε)) ' homD(cof(gpβ), DΦcof(ε))

' homE(cof(pβ), pDΦcof(ε))

' homE(cof(pβ), DΨpcof(ε)) ' 0

since p(ε) ' id. �

Proof of Lemma 2.5. We claim that

1. D of a p-cocartesian edge is p-cartesian, and vice-versa. Indeed, if g a p a h, we see that Dh ' gD.
Therefore, D transforms a cartesian square

gpw gpx

w x

ε ε

into a cartesian square

Dx Dw

hpDx hpDw,

η η

and vice-versa.
2. A pullback of a p-cartesian edge is p-cartesian, and similarly a pullback of a p-cocartesian edge is
p-cocartesian. This follows immediately from our description of such edges.

Now suppose given a span [x α w
β

y] with α p-cartesian and β p-cocartesian. By the above two facts,
we see that in the cartesian square

Dx×Dw Dy Dy

Dx Dw

the horizontal edges are p-cocartesian and the vertical edges are p-cartesian. The conclusion follows. �
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3. Consequences of additivity

Consider the ‘diamond’ diagram of Poincaré ∞-categories

(C, Ϙ)

Met(C, Ϙ) Q1(C, Ϙ) (C, Ϙ)

Hyp(C)

s
=

lag

d1

phyp

Here, phyp is induced by the functor p : Q1(C) C that sends a span x αw
β

y to fib(α), so as a

functor phyp sends the span to (fib(α), Dcof(β)), and lag(x
β

y) = (w,Dcof(β).
One can check that both the horizontal and vertical sequences are split Poincaré–Verdier sequences. By a

formal argument, it follows that for any grouplike additive functor F : Catp∞ Spc (such as GW = Ω|Cob|
or |Cob|, but excluding Pn), we have splittings

F(Q1(C, Ϙ)) ' F(C, Ϙ)× F(Met(C, Ϙ)) ' F(C, Ϙ)× F(HypC)

and an equivalence

lag : F(Met(C, Ϙ)) ' F(HypC)

with inverse induced by can : Hyp(C) Met(C, Ϙ), (x, y) 7→ (x x⊕Dy), since lag ◦ can = id.

3.1. Example. For F = GW, we get that GW(Met(C, Ϙ)) ' Ω|Span(C)| ' K(C).

Now consider the metabolic (split Poincaré–Verdier) sequence

(C, Ϙ[−1]) Met(C, Ϙ) met (C, Ϙ),

where the inclusion is given by x 7→ [x 0] and the projection met is the target functor. Applying GW
and using Example 3.1, we get the Bott-Genauer sequence

GW(C, Ϙ[−1])
fgt

K(C)
hyp

GW(C, Ϙ).

We similarly get a fiber sequence involving Ω|CobF(−)| for every additive F. Moreover, we can identify the
boundary map as follows:

3.2. Lemma. For any additive functor F, the diagram

F(C, Ϙ)

Ω
∣∣∣CobF(C, Ϙ)

∣∣∣ ∣∣∣CobF(C, Ϙ)
∣∣∣∂

commutes. Here, the left diagonal arrow is the inclusion as endomorphisms of 0, and the right diagonal
arrow is the inclusion as degree 0 simplices.

Our next goal is to identify π0 of GW as the previously defined Grothendieck–Witt group. Actually, we
will state the result for an arbitrary additive functor F. To this end, consider the commutative diagram

π0FHypC π0FMet(C, Ϙ) π0F(C, Ϙ)

π1

∣∣∣CobF(HypC)
∣∣∣ π1

∣∣∣CobF(Met(C, Ϙ))
∣∣∣ π1

∣∣∣CobF(C, Ϙ)
∣∣∣

lag met

met
∼=
lag

8



where the lower functor lag is an isomorphism as above. This yields a commutative square

π0FMet(C, Ϙ) π0F(C, Ϙ)

π0FHypC π1

∣∣∣CobF(C, Ϙ)
∣∣∣

met

lag

3.3. Theorem. This is a pushout square of commutative monoids. In particular, π1|Cob(C, Ϙ)| identifies
with the Grothendieck–Witt group.

Proof. We sketch the proof when F = Pn. Note first that for (C, Ϙ) = Hyp(D), this square is

π0ιAr(D) π0ιD

π0(ιD)×2 π0K(D)

t

(s,cof)

which is a pushout square by the known computation for π0 of the K-theory space. Write GW0 for the
pushout of the square in question and γ : GW0 π1 |Cob| for the comparison map that we want to show
is an isomorphism. In view of the metabolic sequence, we then have the commutative ladder

GW0(C, Ϙ[−1]) GW0(HypC) GW0(C, Ϙ) L0(C, Ϙ) 0

π1

∣∣∣Cob(C, Ϙ[−1])
∣∣∣ π1 |Cob(Met(C, Ϙ))| π1 |Cob(C, Ϙ)| π0

∣∣∣Cob(C, Ϙ[−1])
∣∣∣ 0

γ[−1] ∼= γ ∼=

where the upper horizontal maps are given by the composites

GW0(C, Ϙ[−1]) GW0(Met(C, Ϙ))
lag

GW0(HypC)

and
hyp : GW0(HypC) can GW0(Met(C, Ϙ)) met GW0(C, Ϙ),

while the middle vertical map is

GW0(HypC) can GW0(Met(C, Ϙ))
γmet

π1 |Cob(Met(C, Ϙ))| ,
which is an isomorphism as we have explained. Here, we have invoked Lemma 3.2 to see that the righthand
square commutes.

By the additivity theorem, we have that the bottom sequence is exact, using that |Cob(Met(C, Ϙ))| is

connected by Corollary 1.18. Moreover, by Proposition 1.16 we have that L0(C, Ϙ) ∼= π0|Cob(C, Ϙ[−1])|. Now,
it is not difficult to check exactness of the upper sequence. We then invoke the 4-lemma to first establish that
γ, and hence γ[−1], is surjective. Another application of the 4-lemma then shows that γ is also injective. �

We next explain how to deduce Karoubi’s fundamental theorem from the Bott-Genauer sequence.

3.4. Definition. Let (C, Ϙ) be a Poincaré ∞-category. We let

U(C, Ϙ) := fib(K(C)
hyp

GW(C, Ϙ)), V(C, Ϙ) := fib(GW(C, Ϙ)
fgt

K(C)).

The Bott-Genauer sequence now immediately implies the following:

3.5. Theorem (Karoubi fundamental theorem). We have natural equivalences

V(C, Ϙ) ' ΩU(C, Ϙ[2]) ' ΩGW(C, Ϙ[1]).

3.6. Example. Together with Karoubi periodicity, we deduce that for a ring R and invertible module with
involution M , we have equivalences

Vq(R,M) ' ΩUq(R,−M), Vs(R,M) ' ΩUs(R,−M)

for the homotopy quadratic and homotopy symmetric Poincaré structures, and

Vgs(R,M) ' ΩUge(R,−M), Vge(R,M) ' ΩUgq(R,−M)
9



for the genuine symmetric, genuine even, and genuine quadratic Poincaré structures.

3.7. Remark. In relating Karoubi’s fundamental theorem in this setting to the classical one, we implicitly use
the theorem of Hebestreit–Steimle that the Grothendieck–Witt space agrees with the classical version defined
via group completion (for the genuine Poincaré structures). Given this, Example 3.6 proves a conjecture of
Giffen and Karoubi concerning an extension of the classical Karoubi fundamental theorem to the situation
where 2 is not invertible in R.

4. Group completion

Let F : Catp∞ Spc be an additive functor. As we have already used, we have that MapCobF(0, 0) ' F,
so we have a cartesian square of ∞-categories

F(C, Ϙ) CobF(C, Ϙ)0/

0 CobF(C, Ϙ).

4.1. Theorem (“Baby” group completion theorem). Suppose F is in addition grouplike. Then

F(C, Ϙ) ' Ω|CobF(C, Ϙ)|.

Since Ω|CobF| is always grouplike and additive, we deduce:

4.2. Corollary. Ω|CobF(C, Ϙ)| admits a canonical delooping.

4.3. Example. We define the Grothendieck–Witt spectrum GW to be the Ω-spectrum

GW(C, Ϙ) := (GW(C, Ϙ),GW(1)(C, Ϙ),GW(2)(C, Ϙ), ...)

where GW(n) denotes the n-fold delooping of GW supplied by Theorem 4.1. We note that GW is in general
a non-connective spectrum. We will see that the negative L-groups contribute to the negative homotopy
groups of GW.

For the proof of Theorem 4.1, it is convenient to introduce a simplicial model of the slice category
CobF(C, Ϙ)0/.

4.4. Definition. Let S be a simplicial object. The décalage of S is given by

dec(S)n := S1+n.

We then define the simplicial object Null•(C, Ϙ) via the pullback

Null•(C, Ϙ) dec(Q•(C, Ϙ))

0 const(C, Ϙ)

(i0)∗

where (i0)n : [0] ⊂ [n + 1] is the inclusion of 0. For example, we have that Null0(C, Ϙ) = Met(C, Ϙ) as the
kernel of the split Poincaré–Verdier projection d1 : Q1(C, Ϙ) (C, Ϙ). In general, this pullback square is
objectwise a split Poincaré–Verdier square.

4.5. Definition. We define π : Null•(C, Ϙ) Q•(C, Ϙ) by the map

Nulln(C, Ϙ) ⊂ Q1+n(C, Ϙ)
d0 Qn(C, Ϙ),

which is natural in [n] ∈ ∆. At the level of objects, this forgets the leftmost leg [0 x01] of the zigzag x••.

We also define i : const(C, Ϙ[−1] Null•(C, Ϙ) by the map

in : (C, Ϙ[−1]) Nulln(C, Ϙ)

that sends x to the zigzag

x ... 0

0 0 ... 0
10



We note that it’s important to shift Ϙ in order to get a split Poincaré–Verdier inclusion.

We thus get a commutative square

const(C, Ϙ[−1]) Null•(C, Ϙ)

0 Q•(C, Ϙ)

i

π

that one can show is a split Poincaré–Verdier sequence in each degree. Therefore, we get a pullback square
of Segal spaces

F(C, Ϙ) FNull•(C, Ϙ
[1])

0 FQ•(C, Ϙ
[1])

i

π

and it’s not difficult to see that this becomes a pullback square of∞-categories upon completion. In fact, by
general nonsense about the décalage construction we see that this models the pullback square of∞-categories
considered at the beginning of this section.

Our goal is then to show that upon geometric realization, we obtain a pullback square of spaces (assuming
F is also grouplike). To this end, we have the following criterion of Rezk:

4.6. Lemma (Rezk’s equifibration lemma). Consider a pullback square

X• Y•

Z• W•

τ

of functors I Spc. Suppose that τ is equifibered in the sense that for every morphism i j in I, we
have a pullback square of spaces

Y (i) W (i)

Y (j) W (j).

τi

τj

Then upon taking the colimit over I, our square becomes a pullback square of spaces.

Proof. This is a simple exercise with the descent criterion for colimits in an ∞-topos, considered for the
∞-topos of spaces. �

Theorem 4.1 now follows directly from Lemma 4.6 after showing that π : FNull•(C, Ϙ) FQ•(C, Ϙ) is
equifibered. We note that for this, it suffices after the Segal condition to check the low degree cases. For
instance, we need to show that the square

FNull2(C, Ϙ[1]) FQ2(C, Ϙ[1])

FNull1(C, Ϙ[1]) FQ1(C, Ϙ[1])

π

di di

π

is cartesian for i = 0, 1, 2. When i = 1, 2, this square prior to applying F is split Poincaré–Verdier, whereas
when i = 0, taking vertical fibers over 0 yields the map can : F(HypC) F(Met(C, Ϙ)), which we saw is an
equivalence when F is in addition grouplike.

We end by recording the actual group completion theorem, whose proof requires substantial new ideas
that we will not discuss. This is a hermitian enhancement of the “Q = Σ” theorem in K-theory.
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4.7. Theorem (Group completion). Let F : Catp∞ Spc be any additive functor. Then the square

F ∗

∗
∣∣∣CobF(−)

∣∣∣
exhibits |CobF(−)| as the suspension of F in Funadd(Catp∞,Spc), where the superscript denotes that we take
the full subcategory of additive functors. Moreover, F ΩΣF is an equivalence when F is also grouplike.

Given Theorem 4.7, it follows formally that F ΩΣF computes the group completion in Funadd(Catp∞,Spc).
We also deduce a theorem establishing an analogous universal property for the canonical deloopings as a
formal consequence.

4.8. Example. Let F = Pn. Then Theorem 4.7 establishes the universality of (unstable) Grothendieck-Witt
theory (as a functor under Pn).

Let F = Cr. Then Theorem 4.7 yields a strengthening of the universality theorem for K-theory as proven
by Blumberg, Gepner, and Tabuada.
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