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Let (€, ?) be a Poincaré oco-category. Recall that we defined the Grothendieck—Witt group GW(€, Q) to be
the quotient of the commutative monoid mo(Pn(€,?)) of Poincaré objects by the relation (z,q) ~ (hyp(w))
for all (z,q) that admit a Lagrangian w — x. Our goal in these notes is to define space and spectrum level
enhancements of the Grothendieck-Witt group. Let’s first recall how this is done for the K-group of a stable
oo-category by means of the Q-construction.

0.1. Definition. Let C be a stable co-category. The Q-construction is the co-category Span(C) of spans in
el

We may then define the K-theory space K (C) to be | Span(C)|, the loop space on the classifying space of
the Q-construction. Stated more precisely, our first goal in these notes is to define a hermitian enhancement
of the co-category Span(C), where we equip objects and spans with certain Poincaré structure.

1. THE HERMITIAN Q-CONSTRUCTION

Recall the twisted arrow oo-category TwAr(K) has objects arrows [i — j] in K and morphisms

so that morphisms are covariant in the source and contravariant in the target. For example, a picture of the
twisted arrow category TwAr(A?) is given by

/\
/\/\

1.1. Definition. Let € be a stable oo-category. We define Q,,(C) to be the stable co-category given by the
full subcategory of Fun(TwAr(A™), €) on those functors that send all squares to cartesian squares.

1n the setting of stable co-categories, no conditions on the spans are imposed. This stands in contrast to Quillen’s original
Q-construction which was defined in the context of exact categories.
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1.2. Remark. If n = 0, then Q¢(C) = €. If n = 1, then Q;(C) is the co-category whose objects are spans in €
(which should not be confused with Span(€) itself!). If n = 2, then Q2(C) is the oo-category of compositions
of spans in C, etc.

Now, it is more or less clear that Qe(C) defines a Segal object in oco-categories, and tQe(C) defines a
complete Segal space. The oo-category associated to this complete Segal space is then Span(C), i.e., it is the
Q-construction on C.

1.3. Definition. Let (C,?) be a hermitian oco-category. We define Q,,(C,?) to be the hermitian co-category
with underlying stable co-category Q,(€), and with quadratic functor ¢, : Q,,(€)°® — Sp defined by

Qn(c..) = 9(600) XQ(Col) XQ(C(n—l)n) Q(Cnn)

1.4. Example. Let us unpack the example of Q1 (C,?). In this case, if (C,?) is Poincaré with duality D then
so is Q1 (€, ?) with duality

D; : (x «—y— z)— (Dx « Dz xpy Dz — Dz).
A Poincaré object in Q1(C,?) is then given by a hermitian object
o< w o0 G = (4,40 0"q = B7¢)) € 0 (2Aa) xgqw) Aa"))]
such that the map g given by

z w x/

lqu l(ﬁg)m i(lé

Dx «—— Dzx X py, D' —— Dz’

is levelwise an equivalence (where (g;)o1 is defined by the image of 1 under Q*?(w) — Q*B(w,w) =
Map(w, Dw)). In other words, (z,q) and (2/,¢’) are Poincaré objects of (€,?) and the span is a cobordism
thereof.

Note that if ' = 0, then such a hermitian object in Q(C,®) is precisely the data of an isotropic object
over (z,q), and the condition for the hermitian object to be Poincaré corresponds to the condition that the
isotropic object be a Lagrangian, i.e., that

w— =~ Dx — Dw

is an exact sequence (with nullhomotopy furnished by 7).

Let us also explain the geometric intuition behind this notion. Suppose (C,?) = (D”(Z),Q%[_"]). Then
examples of Poincaré objects are furnished by (C*(M), ¢!™]) for closed oriented n-manifolds M, where ¢[M]
is defined by cup-product and pairing against the fundamental class. A cobordism from (C*(M),¢™]) to
(C*(N), ¢y can then be defined by an oriented cobordism W from M to N, where the fundamental class
[W] determines a path from g™ to ¢!V, Here, we invoke Lefschetz duality to see that the Poincaré condition
holds.

The phenomenon that Q;(€,?) is Poincaré if (C,?) is extends more generally to all n:
1.5. Lemma. Suppose (C,?) is Poincaré. Then Q,(C,®) is Poincaré.

Proof. Let J,, C TwAr(A™) be the subposet on 4i and i(:+1). Note that the restriction Q,(€) — Fun(J,, C)
is an equivalence with inverse given by right Kan extension. We may then identify (Q,(C),?,) with the
cotensor (C,?)’» in hermitian oo-categories, and this is Poincaré since J,, is the category of simplices of the
simplicial complex given by sticking n closed intervals end to end.
Note also that the duality D,, on (€,9)’» is given by
[Co0 «— Co1 —> - <= C(n—1)n — Cnn] F>
[DCOO <« DCOO X Deor D611 — ... Dc(n—l)(n—l) XDC(7L71)7L Dc,m — Dcnn]
|

It should now be clear that Poincaré objects of Q,,(C,?) are given by n-fold compositions of cobordisms.
We next consider the functoriality in [n] € A. Suppose (€, ?) is Poincaré.

1.6. Lemma. For any map f : [n] — [m] in A, the hermitian functor f* : Qm(C,?) — Qn(C,?) is Poincaré.
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Proof. We first remark that the hermitian structure n : ¢, = f*?,, is given by the obvious map

9(1‘00) X ... X Q(xmm) — 9($j'(0)j'(0)) X ... X Q(xf(n)f(n))

natural in Zee € Q,,(€). Now by the formula for the duality, it is clear (at least intuitively) that the duality
commutes with f* if f is a degeneracy or an outer face map. The case of an inner face map is slightly more
complicated since f* will involve terms right Kan extended from J,,. For example, if f = d; : [1] C [2], we
observe that for xee € Q2(C), since

D(Jtoo) XD(woz) D(]}gg) ~ D(l‘n)

we get that
D(x00) X D(gs) D(222) = D(200) X D(201) D(T01) X D(2g5) D(T12) X D(212) D(w22)

>~ D(%00) X D(xo1) D(@11) X D(15) D(22)

which is the main step in showing that D, f* ~ f* Dy, where both composites evaluate on e as
D(xoo) <« D(Jjoo) XD(:EOQ) D(IQQ) — D(JZQQ).
U

1.7. Lemma. Let f : [n] — [m] be an injection in A. Then f*: Qn(C,?) — Qm(C,?) is a split Poincaré-
Verdier projection.

Proof. We spell out a few cases in low degrees. First consider f = dy : [0] C [1] so that f* : Q(€) — C
sends [z «— w — '] to &’. Then f* admits a left adjoint L : ¢ — [0 =0 — ¢], and (L*?1)(c) =~ 2(c).
Next consider f =dj : [1] C [2]. Then f* admits a left adjoint

Lifr—w—2]=z—w=w=w— 2]
and
(L) (x — w — 2') ~ x) Xoqu) Az") ~ A (z «— w — 2').
Finally consider f = dp : [1] C [2]. Then f* admits a left adjoint
Lifx—w—2]—=[0=0—2«—w— 2]
and again it is clear that L*Q5 ~ 9. O
1.8. Lemma. Q.(C,?) is a complete Segal object of Cat?,.

Proof. This follows by the known result for the underlying stable co-categories and the explicit formula for
the pullback of Poincaré oco-categories (which is computed as a pullback of hermitian co-categories): recall
that given a span

(6,9) (M)) (e//79//) ({.‘7175) (G/,Q/)

the quadratic functor Qon € xer € is given by
(e )= gl i (900 25 (F1)(0) = (¥'9)(€) £ ().
For example, consider the claim that the commutative square

Q2(€,2) —— Qu (€, 9)

Q[o,l](eaQ) - Q[l](eag)
is a pullback square of Poincaré oo-categories. This translates to the assertion that
92(0..) ~ lim (Ql(CO < Co1 — Cl) — Q(Cl) <« 91(61 < C12 — Cg)) s

which is clear. O



Recall that a square in Cat?_ is said to be split Poincaré-Verdier if its vertical morphisms are split
Poincaré-Verdier. We then say that a functor F : Cat? — Spc is additive if it is reduced and sends
split Poincaré-Verdier squares to cartesian squares of spaces. (We note in passing that a simple argument
shows that after the reduced assumption the latter condition is equivalent to sending split Poincaré-Verdier
sequences to fiber sequences).

1.9. Example. Let ¥ = Pn be the functor that sends (C,?) to its space of Poincaré objects. Then since
Pn is corepresented by (Sp“,?"), Pn is additive. Similarly, the functor ¥ = Cr that sends (€, ?) to (C is
additive, being corepresented by Hyp(Sp®).

Combining Lemma 1.8 and Lemma 1.7, we see that for any additive functor F : Cat?, — Spc, the
composite FQe(C,?) : A°? — Spc is a Segal space. Moreover, if F preserves pullbacks then FQ,.(C,?) is a
complete Segal space. In particular, we see that PnQe(C,?) is a complete Segal space.

1.10. Definition. We define the F-cobordism oo-category Cob?(e, ?) to be the co-category associated to the
Segal space FQ(€, M. If ¥ = Pn, we write Cob(€,?) = Cob"™(€,?).

To belabor the obvious, Cob(C, ?) is the oo-category whose objects are given by Poincaré objects in (C, 9[1])
and whose morphisms are given by cobordisms thereof.

1.11. Remark. We note that Mapc,,7 (e ¢)(0,0) ~ F(C, ?). This makes Q|Cob” (€,9)| a good candidate for
the group completion of F, as we will see below.

1.12. Example. We run through a few different examples of cobordism categories.

1. If F = Cr, it is clear that Cob“(€,?) = Span(C).

2. For any additive functor F, we have Cob” (Hyp(C)) ~ Span’°™P(@), where Span”(—) is defined
for any additive functor § : Catly — Spc by analogy with Definition 1.10. Indeed, one observes
that Q,Hyp(C) ~ HypQ@.,,(C) by juggling the universal properties, so FQ,Hyp(C) ~ FHypQ.(C). In
particular, for § = Pn, since PuHyp = Cr we have Cob(Hyp(€)) ~ Span(C).

3. We claim that Cob(C,?°) ~ Span(€)"“2, where the Cy-action on Span(€) =~ [tQ4€| is induced by
the levelwise action of D¢ on tQeC. This follows from two assertions: (i) the Poincaré structures on
Qn(C,9%) are all symmetric; (ii) the space of Poincaré objects in (D, ®*) is given by D"z, (We
also use that limits of oo-categories are computed levelwise in terms of complete Segal spaces since
the inclusion Cat., C sSpc is right adjoint.)

4. A basic feature of Span(C) is that Span(€) ~ Span(€)°P. The same holds true for the cobordism
category Cob” (€,9) and for the same reason. Indeed, one has Qq(C,9) ~ Qrev(e)(C, ?) (the reversed
simplicial object) in view of the natural isomorphism TwAr(A™) = TwAr((A™)P).

We are now ready to define the Grothendieck—Witt space of a Poincaré oo-category.
1.13. Definition. Given a Poincaré co-category (C,?), we define its Grothendieck—Wiit space to be
GW(C,?) := Q|Cob(C,?)|,
where the basepoint is given by the zero Poincaré object.

1.14. Remark. Note that Q. preserves products. Since JF is additive and geometric realization commutes
with products, it follows that |Cob” (—)| preserves products. Now since Cat?, is semiadditive, |Cob” (=]
canonically lifts to Mong,__, the co-category of E..-monoids in spaces. Therefore, GW canonically lifts to
Gpg,__, the oo-category of grouplike E..-monoids in spaces, which identifies with connective spectra. We
warn the reader that this spectrum should not be confused with the Grothendieck—Witt spectrum, which is
a canonical delooping of GW to a generally non-connective spectrum that we will define below.

Actually, we can compute 7o|Cob” (—)| to be a group so that |Cob” (—)| is also valued in grouplike E,
monoids:

1.15. Lemma. The Poincaré endofunctor (ide, —ide) of (C,®) induces the inversion on mwy|Cob” (—)|.

Moreover, we can explicitly compute 7o|Cob” (=)|:
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1.16. Proposition. We have a pushout square of commutative monoids

To(F(Met (€, 9MH))) —2, moF(e, )

| |

0 7o ‘Cob?(e, 9)‘

where the righthand vertical functor is induced by the inclusion of the degree O simplices.

Proof. As with any Segal space, we have that WO\Cobg(G, ?)| may be computed as the coequalizer of the face
maps do,dy : moFQ1(C, 9[1]) — mF(C, 9[1]). Now consider the split Poincaré—Verdier sequence
Met (€, oty — Q, (€, 9y — d;(e,9lth.

Noting that the other face map yields the Poincaré functor met, after applying F we get the commutative
square in question as well as a surjective map f : coker(met) — 7o|Cob” (€, ?)]. Now, the commutative
monoid coker(met) is in fact a group by the same argument that we used to show the L groups are groups.
It remains to see that f is injective to conclude. So suppose x € moF(C, ?[1]) is an element that maps to 0 in
7o|Cob” (€, 9)]. We then have w € moFQ1(C, ™) such that dy(w) = 2 and dy(w) = 0. Again, by applying
the additive functor F to the above split Poincaré—Verdier sequence we get a lift of w to meF(Met(C, 9[1])),
so = 0 in coker(met). O

1.17. Example. If ¥ = Pn, then Proposition 1.16 shows that mo|Cob(€,?)| = L_;(C, ?).
1.18. Corollary. |Cob” (Met(€,9))| and |Cob” (Hyp@)| are both connected spaces.

Proof. This follows from Proposition 1.16 once we note that met : Met(Met(C, ?)) — Met(€, ?) and met :
Met(HypC) — Hyp(C) are both split. |
2. ADDITIVITY

Let ¥ : Cat? — Spc be an additive functor.
2.1. Theorem (Additivity theorem). The functor |Cob” (=)| : Cat?, — Spc is additive.
The additivity theorem can be deduced from the fibration theorem.

2.2. Theorem (Fibration theorem). Suppose (p,0) : (D, ®) — (€, ¥) is a split Poincaré—Verdier projection.
Then
(p,0). : Cob” (D, ®) — Cob” (&, W)

is a bicartesian fibration.

Proof of Theorem 2.1. Given a bicartesian fibration f : X — Y, note that all the fibers X,, are weak homotopy
equivalent to each other. Indeed, for all a: y — ¢, we have an adjunction

ar: Xy =X :a”,
and adjoint functors induce weak homotopy equivalences. Moreover, for any y € Y, we get that

|Xy[ —— [X]

o

{y} — 14l
is a pullback square of spaces. It then follows that for any split Poincaré—Verdier sequence
(€,2) — (D,?) — (€,9),

if we can show that
Cob”?(C,9) —— Cob” (D, ®)

| |
{0} —— Cob7 (&, )



is a pullback square of co-categories, then

’Cob?(e,Q)‘ - ‘cobf’"(@,cp)‘

| l

{0} ’cob’f(a, \11)’

is a pullback square of spaces by Theorem 2.2. We now note that for a finite poset P such that the cotensor
(—)¥ preserves Poincaré oo-categories, (—)¥ : Cat?, — Cat®_ is both a left and right adjoint and hence
preserves split Poincaré—Verdier sequences. Thus, Q. and hence FQ, are additive functors, so we have a
pullback square of Segal spaces, and an easy argument shows that this remains a pullback square upon
completion. |

In the remainder of this section we will partially sketch the proof of Theorem 2.2 when ¥ = Pn. As a
warmup, we first explain how to prove the fibration theorem for K-theory. Let p: D — € be a split Verdier
projection. Then we claim that

(i) p is a bicartesian fibration.

(ii) ps« : Span(D) — Span(€) is a bicartesian fibration.
For (i), let g 4 p 4 h be adjoints. Then for x € D and an edge @ : pxr — 7 € &, we claim that a p-cocartesian
lift of @ is furnished by taking the map « in the pushout square

gpr — g7

]

r — .

Indeed, this following directly from the mapping space criterion to be a p-cocartesian edge. Dually, given
x € D and an edge 8 :y — px € &, a p-cartesian lift of £ is given by the map £ in the pullback square

y—>2

.

hy BN hpx.

For (i), the idea is that given x € Span(D) and a span pz < @ 2, 7, a py-cocartesian lift is given by

< @ =w L Bya*r = y (here @* and 3, denote the cartesian and cocartesian transition functors
encoded by p), and dually for p,-cartesian lifts.

2.3. Remark. This approach to the additivity theorem in K-theory via the fibration theorem for span
categories is due to Steimle. In addition, step (ii) (that is, the demonstration that for a bicartesian fibration,
the passage to span categories remains a bicartesian fibration) is Barwick’s ‘unfurling’ construction.

We now explain how to bring Poincaré structures into the game. Suppose given a Poincaré object (x,q)
in (D, ®) and a cobordism
& 1\ B ,_ _
(px,0q) <> (w,n) — (7,7)
(som:a*q~ B*F and the induced map W — DT X pw Dy is an equivalence). We then want to endow the
py-cocartesian lift x < w =N y with cobordism structure; this will be our (p,6).-cocartesian lift of the
cobordism. First, for the hermitian structure on y, we use the following claim:

2.4. Lemma. For any p-cocartesian edge § : w — y, we have that ®(y) = ®(w) Xypw) Y(py) is an
equivalence.

Given this, we then let r := (a*q, 7,7 : a¥*q¢ = a*g ~ 7) € Q°®(y) be the hermitian form on y. Also, we
let n : a*q ~ B*r be any lift of 7.
We then verify the Poincaré condition on (z, q) <* (w,n) N (y,7). For this, we use the following claim:
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2.5. Lemma. The duality D, on Q1(D, ®) preserves p.-cocartesian spans.

Given this, we have that in the diagram

T w y

l% lﬁu lrn
’ ﬂ/

Dz «<*— Dz xpy, Dy —— Dy

the morphism «' is p-cartesian and the morphism £’ is p-cocartesian. Now since gz is an equivalence by as-
sumption, it follows from the uniqueness of p-cartesian and p-cocartesian lifts that 7y and ry are equivalences.
We deduce that the span is in fact a cobordism.

We omit the proof that this cobordism is actually a (p,6).-cocartesian lift. Once one shows this, the
construction of (p, §)*-cartesian lifts is entirely dual.

Proof of Lemma 2.4. Since j3 is p-cocartesian, we have that y ~ w Ue gpw,gps 9PY, i-€., gPW >~ W Xg 4 c GDY-
Since (p, ) is a split Poincaré—Verdier projection, ®g ~ W. Thus, it suffices to see that ® of the square in
question is cartesian. This holds if and only if Bg(cof(gpf), cof(e)) = 0. But we have that

B (cof(gpp), cof(€)) ~ homop (cof (gpB), Do cof(€))
~ homg (cof (pf), pDgcof (€))
~ homeg (cof (pB), Dypcof(e)) ~ 0

since p(e) ~ id. O

Proof of Lemma 2.5. We claim that

1. D of a p-cocartesian edge is p-cartesian, and vice-versa. Indeed, if g 4 p - h, we see that Dh ~ gD.
Therefore, D transforms a cartesian square

gpw —> gpx

into a cartesian square

Dz

I I

hpDx —— hpDw,

and vice-versa.
2. A pullback of a p-cartesian edge is p-cartesian, and similarly a pullback of a p-cocartesian edge is
p-cocartesian. This follows immediately from our description of such edges.

Now suppose given a span [z <2~ w N y] with a p-cartesian and 8 p-cocartesian. By the above two facts,
we see that in the cartesian square

Dz xpy Dy —— Dy

l |

Dz Dw

the horizontal edges are p-cocartesian and the vertical edges are p-cartesian. The conclusion follows. ]
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3. CONSEQUENCES OF ADDITIVITY

Consider the ‘diamond’ diagram of Poincaré oo-categories

(€,9)
Met(C,Q) —— Q1(C,9) —L (€,9)
log iphyp
Hyp(€)

Here, p™P is induced by the functor p : Q;(€) — € that sends a span = «— aw BN y to fib(a), so as a

functor p™® sends the span to (fib(a), Dcof(B)), and lag(x 2, y) = (w, Deof(B).

One can check that both the horizontal and vertical sequences are split Poincaré—Verdier sequences. By a
formal argument, it follows that for any grouplike additive functor F : Cat?  — Spc (such as GW = Q|Cob|
or |Cob|, but excluding Pn), we have splittings

F(Q1(C,9)) = F(C,?) x F(Met(€,?)) ~ F(€,?) x F(HypC)
and an equivalence
lag : F(Met(C,?)) => F(HypC)
with inverse induced by can : Hyp(€) — Met(C,?), (z,y) — (x — x @ Dy), since lag o can = id.
3.1. Example. For F = GW, we get that GW(Met(C, ?)) ~ Q| Span(€)| ~ K(C).
Now consider the metabolic (split Poincaré—Verdier) sequence
(€, e71) — Met(€,9) = (€,9),

where the inclusion is given by = +— [ — 0] and the projection met is the target functor. Applying GW
and using Example 3.1, we get the Bott-Genauer sequence

aw(e, o) = ke) B8 aw(e,?).

We similarly get a fiber sequence involving ©2|Cob” (—)| for every additive . Moreover, we can identify the
boundary map as follows:

3.2. Lemma. For any additive functor F, the diagram

F(e,9)
/ \

QO ’Cob?(e, 9)] 9 ‘Cobg(e, 9)‘

commutes. Here, the left diagonal arrow is the inclusion as endomorphisms of 0, and the right diagonal
arrow is the inclusion as degree 0 simplices.

Our next goal is to identify my of GW as the previously defined Grothendieck—Witt group. Actually, we
will state the result for an arbitrary additive functor F. To this end, consider the commutative diagram

la

o FHypC moFMet (€, Q) met T F(C, Q)

i l |

T ‘Cobg(HypG)‘ <h;—g 1 ’Cob?(Met(G,Q))’ met, o ‘Cob?(G,Q)‘

8



where the lower functor lag is an isomorphism as above. This yields a commutative square

ToFMet(C,9) —2 & 7T (C,9)

-

ToFHypC m ‘Cob?(e, 9)‘

3.3. Theorem. This is a pushout square of commutative monoids. In particular, m1|Cob(C,?)| identifies
with the Grothendieck—Witt group.

Proof. We sketch the proof when ¥ = Pn. Note first that for (€,?) = Hyp(D), this square is
7ot Ar(D) motD

l(s,cof) l

7T0(L'D)X2 . WQK('D)

which is a pushout square by the known computation for my of the K-theory space. Write GWq for the
pushout of the square in question and v : GWy — 71 |Cob| for the comparison map that we want to show
is an isomorphism. In view of the metabolic sequence, we then have the commutative ladder

GWo(e, o) GW(Hype) GWo(€,9) ———— Lo(C,9) ———— 0

o | t -

™ )Cob(G,Q[_”)‘ s 7y [Cob(Met(€,9))| —— m |Cob(€, )] —— 7o ‘Cob((?,?[_l])’ — 0

where the upper horizontal maps are given by the composites

GWo (€, 271) — GWo(Met(C,2)) 25 GW,(HypC)
and
hyp : GWo(Hyp€) <25 GWo(Met(C,?)) 2% GWo(€, ),
while the middle vertical map is
GWo(HypC) < GW,(Met(C,9)) 1> m |Cob(Met(€,9))] ,

which is an isomorphism as we have explained. Here, we have invoked Lemma 3.2 to see that the righthand
square commutes.

By the additivity theorem, we have that the bottom sequence is exact, using that |Cob(Met(C,?))| is
connected by Corollary 1.18. Moreover, by Proposition 1.16 we have that Lo (C, ?) = my|Cob(C, 9[71])\. Now,
it is not difficult to check exactness of the upper sequence. We then invoke the 4-lemma to first establish that
7, and hence =1, is surjective. Another application of the 4-lemma then shows that  is also injective. [J

We next explain how to deduce Karoubi’s fundamental theorem from the Bott-Genauer sequence.

3.4. Definition. Let (C,?) be a Poincaré oo-category. We let
U(C,Q) == fib(K(€) 8 GW(E,9)), V(E,?) := fib(GW(C,2) &% K(€)).

The Bott-Genauer sequence now immediately implies the following:

3.5. Theorem (Karoubi fundamental theorem). We have natural equivalences
V(€,9) ~ u(e, ) ~ agw(e, .
3.6. Example. Together with Karoubi periodicity, we deduce that for a ring R and invertible module with
involution M, we have equivalences
VI(R,M)~QUI(R,—M), V(R,M)~QU*(R,—M)
for the homotopy quadratic and homotopy symmetric Poincaré structures, and
VIS(R, M) ~ QUI®(R,—M), VI°(R,M) ~ QU (R,—M)
9



for the genuine symmetric, genuine even, and genuine quadratic Poincaré structures.

3.7. Remark. In relating Karoubi’s fundamental theorem in this setting to the classical one, we implicitly use
the theorem of Hebestreit—Steimle that the Grothendieck—Witt space agrees with the classical version defined
via group completion (for the genuine Poincaré structures). Given this, Example 3.6 proves a conjecture of
Giffen and Karoubi concerning an extension of the classical Karoubi fundamental theorem to the situation
where 2 is not invertible in R.

4. GROUP COMPLETION

Let F : Cat?, — Spc be an additive functor. As we have already used, we have that Mapg,s(0,0) ~ F,
so we have a cartesian square of co-categories

F(C,9) —— Cob” (€,9)y,

| |

0 Cob” (G, 9).

4.1. Theorem (“Baby” group completion theorem). Suppose F is in addition grouplike. Then
F(C,9) => Q|Cob” (C,9)|.
Since Q|Cob?| is always grouplike and additive, we deduce:
4.2. Corollary. Q|Cob” (€,9)| admits a canonical delooping.
4.3. Example. We define the Grothendieck—Witt spectrum GW to be the Q-spectrum
GW(C,?) := (GW(C,?),GWI(€,9),GWP (e,9),..)

where GW(™ denotes the n-fold delooping of GW supplied by Theorem 4.1. We note that GW is in general
a non-connective spectrum. We will see that the negative L-groups contribute to the negative homotopy
groups of GW.

For the proof of Theorem 4.1, it is convenient to introduce a simplicial model of the slice category
Cob” (€,9)o,-

4.4. Definition. Let S be a simplicial object. The décalage of S is given by
dec(S), = Siin-
We then define the simplicial object Nulle (€, ?) via the pullback
Nulle(C,?) —— dec(Q4(C,?))

| o

0 const(C, ?)

where (ig)n : [0] C [n + 1] is the inclusion of 0. For example, we have that Nully(C,?) = Met(C,?) as the
kernel of the split Poincaré—Verdier projection d; : Q1(C,2) — (C,?). In general, this pullback square is
objectwise a split Poincaré—Verdier square.

4.5. Definition. We define 7 : Nulle(C,?) — Q. (C,?) by the map
Null, (€,9) € Q14n(C,9) -2 Q,.(€,9),

which is natural in [n] € A. At the level of objects, this forgets the leftmost leg [0 «<— zq1] of the zigzag Tee.
We also define i : const(C, -1 Null, (€, ?) by the map

in s (G, 9 Y) — Null, (€,9)

SN N

that sends x to the zigzag



We note that it’s important to shift € in order to get a split Poincaré—Verdier inclusion.

We thus get a commutative square

const (€, 7Yy — Null,(€,?)

i |-

0 Qe(C,9)

that one can show is a split Poincaré—Verdier sequence in each degree. Therefore, we get a pullback square
of Segal spaces

F(C,9) —— FNull,(€,9M)

l I

0 FQ.(€,9M)

and it’s not difficult to see that this becomes a pullback square of co-categories upon completion. In fact, by
general nonsense about the décalage construction we see that this models the pullback square of co-categories
considered at the beginning of this section.

Our goal is then to show that upon geometric realization, we obtain a pullback square of spaces (assuming
F is also grouplike). To this end, we have the following criterion of Rezk:

4.6. Lemma (Rezk’s equifibration lemma). Consider a pullback square

Xe — Y,

Ik

Z."W.

of functors I — Spc. Suppose that T is equifibered in the sense that for every morphism i — j in I, we
have a pullback square of spaces

i

Y (i) —— W)
Then upon taking the colimit over I, our square becomes a pullback square of spaces.

Proof. This is a simple exercise with the descent criterion for colimits in an oco-topos, considered for the
oo-topos of spaces. |

Theorem 4.1 now follows directly from Lemma 4.6 after showing that 7 : FNulle(C,?) — FQ.(C,?) is
equifibered. We note that for this, it suffices after the Segal condition to check the low degree cases. For
instance, we need to show that the square

FNully (€, M) —— FQ,(e, o)

’ o

FNully (€, 1)) —— FQ (e, )

is cartesian for ¢ = 0,1,2. When ¢ = 1,2, this square prior to applying JF is split Poincaré—Verdier, whereas
when ¢ = 0, taking vertical fibers over 0 yields the map can : F(HypC) — F(Met(C, ?)), which we saw is an
equivalence when JF is in addition grouplike.
We end by recording the actual group completion theorem, whose proof requires substantial new ideas
that we will not discuss. This is a hermitian enhancement of the “Q = ¥” theorem in K-theory.
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4.7. Theorem (Group completion). Let F : Catl — Spc be any additive functor. Then the square
F

*

i

i —— |Cob? ()]

exhibits |Cob” (=)| as the suspension of F in Fun®(Cat?_, Spc), where the superscript denotes that we take
the full subcategory of additive functors. Moreover, F — QXF is an equivalence when F s also grouplike.

Given Theorem 4.7, it follows formally that F — QXF computes the group completion in Funadd(Catg07 Spo).
We also deduce a theorem establishing an analogous universal property for the canonical deloopings as a
formal consequence.

4.8. Example. Let 3 = Pn. Then Theorem 4.7 establishes the universality of (unstable) Grothendieck-Witt
theory (as a functor under Pn).

Let F = Cr. Then Theorem 4.7 yields a strengthening of the universality theorem for K-theory as proven
by Blumberg, Gepner, and Tabuada.
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