
LECTURES 1-3

ELDEN ELMANTO

“Instructions for living a life: Pay attention. Be astonished. Tell about it.”
Sometimes, Mary Oliver.

1. From vector bundles to zeta functions

The Grothendieck group of a scheme is, by now, a rather ancient object. For simplicity, we
assume that X is a quasi-projective scheme over a commutative ring R. For example X itself
could be Spec R. Then K0(X) defined by

K0(X) := Z〈[E]:E is an isomorphism class of vector bundles on X〉
([E]=[E′]+[E′′],0→E′→E→E′′→0) .

If X = Spec R is affine, then a finitely generated projective module is the same thing as a vector
bundle on X and K0(X) can be described as the group completion of the monoid of isomorphism
classes of such objects: it is the initial abelian group equipped with a commutative monoid
map Proj'R → K0(X) where Proj'R is the monoid of isomorphism classes of finitely generated
projective R-modules.

The idea of group-completion and K0 has now pervaded mathematics so much that it is hard
to think that it was once a very innovative move by Grothendieck. In essence K0 captures the
global structure of “linear algebra over X.”

Example 1.0.1. Assigning a vector bundle its rank descends to a map of abelian groups

K0(X)
rank−−−→ H0

Zar(X;Z).1

Let X = Spec F a field. Then, up to isomorphism, every finite dimensional vector space over F
is completely classified by its rank. This descends an isomorphism

rank : K0(X)
∼=−→ Z [V]− [W] 7→ rank(V)− rank(W),

giving us the first calculation of a K-group.

Linear algebra is only slightly more difficult over dedekind rings.

Example 1.0.2. Given any ring R, we have a group homomorphism

det : K0(R)→ Pic(R).

This is the usual determinant construction: if P is a finitely generated projective module
with constant rank n, then det(P) ∼=

∧n
R(P); otherwise one has to perform this construction

component-wise. In any case, the fact that the determinant descends to a map of groups boils
down to the following fact: if P and Q are finitely generated projective modules of constant
ranks n and m respectively then

m+n∧
R

(P⊕Q) =

n∧
R

(P)⊗
m∧
R

(Q).

The combination of the the determinant and the previous construction defines a map

rank⊕ det : K0(Spec R)→ H0
Zar(Spec R;Z)⊕ Pic(R).

1Note that this latter object is simply the ring of continuous functions from X (as its Zariski topological
space) to Z.
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This map is surjective: if Spec R is connected there is a set-theoretic splitting given by (m,L) 7→
[L]−m[R]. This already suggests the complexity of K0: that it knows at least as much as the
Picard group of Spec R. Now, if R is (commutative), noetherian ring of Krull dimension one
then it is a standard algebra fact that any finitely generated projective R-module of rank n is
isomorphic to P = R⊕n−1 ⊕ det(P); for example see [Wei13, Proposition 3.4]. Therefore, the
above map is an isomorphism in this particular instance.

The construction of det also extends to the world of schemes; in particular [Wei13, Proposi-
tion II.8.2.1] we see that if X is a 1-dimensional, separated, regular noetherian scheme then

rank⊕ det : K0(X)
∼=−→ H0(X;Z)⊕ Pic(X).

The higher K-groups are more mysterious, but no less important than K0. One standard
motivation for them is actually calculational: let X be a smooth over k. It turns out that if if
X = U ∪V is an open cover, then we get an exact sequence

K0(X)→ K0(U)⊕K0(V)→ K0(U ∩V)→ 0,

but the last map fails to be injective:

Remark 1.0.3. Let X be a scheme. Then we have the following exact sequence, owing to the
formalism of the Picard stack

0 O(X)× O(U)× ⊕ O(V)× O(U ∩V)×

Pic(X) Pic(U)⊕ Pic(V) Pic(U ∩V) 0.

We can use the calculation of K0 of 1-dimensional noetherian schemes rings of Example 1.0.2
to give examples of the failure of the map K0(X)→ K0(U)⊕K0(V) to be injective.

We begin with an easy non-affine example; assume that k is a field (or a regular local ring)
and consider the open cover of P1

k by two copies of A1
k. We know that Pic(P1

k) ∼= Z〈O(1)〉. But
then Pic(A1

k) ∼= Pic(k) ∼= 0. Hence, there is no way that the map on Picard groups is injective2.
Let us come up with an affine example: we want to find a dedekind domain R, nontrivial

invertible sheaf L on Spec R and elements f, g ∈ R with (f, g) = R and L[ 1
f ],L[ 1

g ] trivial. Let

k be an algebraically closed field of characteristic zero. We will consider the following affine
scheme: let R be

R = k[x, y]/(y2 − x3 − 1).

In other words, it is the closed subscheme of A2 cut out by the equation y2 = x3 + 1. This is
an example of a punctured elliptic curve; it is easy to see that Pic(R) ∼= X(k), the abelian
group of k-points of the elliptic curve itself. Hence any non-identity point is a nontrivial element
of Pic(R). Consider the following elements of R: f = y − 1, g = y + 1. In this case, we have
that

f − g = y − 1− (y + 1) = −2

so that indeed (f, g) = R. Consider the ideal (which corresponds to an element of the Picard
group under the divisor-line bundle correspondence)

L = (x, y + 1).

Geometrically, this coincides with the point (0,−1) ∈ X(k) which is nonzero. Now, I claim that
L is free on the charts Spec Rg1 ,Spec Rg2 . Indeed

L|Rg = (x, y + 1)[ 1
y+1 ] = (y + 1),

while
L|Rf = (x, y + 1)[ 1

y−1 ] = (x)

2One can also calculate that Z⊕ Z ∼= K0(P1
k)→ K0(A1

k)⊕K0(A1
k) ∼= Z⊕ Z is a rank 1-matrix.
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since
x3 = 1− y2 = (1− y)(1 + y)⇒ x3

1−y = 1 + y.

Therefore we see that L is a locally free sheaf which is not globally trivial.

Inspired by generalized cohomology theories from topology, one can imagine a sequence of
groups {Ki(X)}i>0 which rectifies this failure in the sense we get a long exact sequence

· · · Ki(U ∩V) Ki(U)⊕Ki(V) Ki(U ∩V)

· · · K1(U ∩V) K1(U)⊕K1(V) K1(U ∩V)

K0(X) K0(U)⊕K0(V) K0(U ∩V) 0.

In particular, the discussion of Remark 1.0.3 suggests that K1 should have something to do
with units. Indeed, a posteriori, there is a determinant map

det : K1(X)→ H0
Zar(X;Gm) ∼= O(X)×

which turns out to be an isomorphism whenever X is a semilocal ring [Wei13, Lemma III.1.4].
Eventually, the higher K-groups were first defined by Quillen in his remarkable paper [Qui10] but
it was not until Thomason-Trobaugh [TT90] that we can associate to a general quasi-compact,
quasi-separated scheme X, its K-groups (including negative ones!) {Ki(X)}i∈Z satisfying the
Mayer-Vietoris long exact sequence as above. It is then natural to ask what information the
higher K-groups contain, keeping in mind that K0 has something to do with linear algebra.

1.1. Zeta functions and sizes of K-groups. One of the most compelling answers to the
above questions has to do with zeta functions. Computation of K-groups are few and far
between, the first complete one was of finite fields and is due to Quillen himself [Qui72]:

Theorem 1.1.1. Let q = pn, then

Kj(Fq) =


Z j = 0

0 j = 2i, j < 0

Z/(qi − 1) j = 2i− 1, i > 0

.

Lichtenbaum [Lic73] observed that Quillen’s calculation, coupled with some other contem-
poraneous development due to Tate, is actually very suggestive. The following complex-valued
function is a classical object.

Definition 1.1.2 (Hasse-Weil). Let X be a finite type Z-scheme of which is relatively equidi-
mensional over Z of relative dimension d. We define the Hasse–Weil zeta function attached
to X to be

ζ(X, s) =
∏
x∈|X|

1

1−#κ(x)−s
;

where |X| is the topological space (set) of closed points on the scheme X and #k denotes the
cardinality of a finite field k. Notice that the residue field κ(x) of a closed point x ∈ |X| is also
finite, since X is finite type over Z.

In particular, we can write:

ζ(SpecFq,−s) =
1

1− qs
= 1
|K2s−1(Fq)| .

Around the same time, Tate [Tat71] was studying K2 in the context of reciprocity laws. Sup-
ported by some computer-assisted data by Birch [Bir71], we have the following conjecture.



4 E. ELMANTO

Conjecture 1.1.3 (Birch-Tate conjecture). Let F be a totally real number field, then

ζ(Spec F,−1) = ± |K2(OF)|
|K3(OF)tors| .

Tate affirmed the analog of this conjecture for F the function field of a curve over a finite
field [Tat71]; see also Bass’ Bourbaki talks on these matters [Bas71].

Remark 1.1.4 (The class number formula). Anachronistically, we can also view Dirichlet’s
class number formula in the same vein as Conjecture 1.1.3. Let F be a number field and OF

its ring of integers. We set ζ(SpecOF, 0)∗ be the coefficients of the first non-vanishing term of
a Taylor expansion of ζ(SpecOF, s) around zero; this helps make sense of special values of the
zeta function even if ζ does vanish at zero, as is sometimes the case. The Dirichlet class number
formula then states:

ζ(SpecOF, 0)∗ = − |K0(OF)tors|
|K1(OF)torsion|

· RF,

where RF is Borel’s regulator. For example, if F = Q then

K0(Z) ' Z K1(Z) = {±1} ζ(SpecZ; 0) = − 1
2 .

To relate this to what Dirichlet would have proved we need to know that:

(1) the torsion part of K0 of a number ring is exactly Pic(OF) as explained in Example 1.0.2;
(2) the resolution of the “congruence subgroup problem” due to Bass-Milnor-Serre [BMS67]

which implies that K1(OF) ∼= O×F .

Extrapolating the Birch-Tate conjecture and the class number formula to higher K-groups
and the zeta values ζ(SpecOF, s) for s 6 0, Lichtenbaum conjectured in [Lic73, Conjecture 2.4]
that there should be a relationship between these zeta values and the ratio of even and odd
K-groups; we will not state the precise conjectures here but the reader is referred to [Kol04] or
[EZ24, Section 3] for more recent surveys. Towards accessing these conjectures and supported
by Tate’s calculation of K2 of number rings in terms of étale cohomology [Tat76], Quillen
conjectured a cohomological formula for K-theory, first stated as [Lic73, Conjecture 2.5]. Later,
in his 1974 ICM address in Vancouver, Quillen sharpened this to the following conjecture:

“The work of Tate on K2 of global fields suggests that Kn(A) might be related
to the étale cohomology of Spec(A). To be more precise, one might hope to
have a spectral sequence, analogous to the Atiyah-Hirzebruch spectral sequence
of topological K-theory, starting with the étale cohomology groups

Ep,q2 =

{
0 q odd

Hp
ét(A[ 1

` ];Z`(−q/2) q even.

whose abutment would coincide with K−p−qA⊗Z` at least in degrees −p− q >
1+d, where d is the Krull dimension of A. If A is the ring of integers in a number
field, and either ` is odd or A is totally imaginary, this spectral sequence would
degenerate, yielding cohomological formulas for the K-groups conjectured by
Lichtenbaum.”

We will soon make this prediction precise, but let us explain another perspective on what
K-theory is.

1.2. K-theory and algebraic cycles. There is yet another answer to what K-theory is from
a geometric viewpoint. To do so, we define a “homological” or, more precisely, a “Borel-Moore”
counterpart to K-theory. If X is a noetherian scheme then set:

G0(X) := Z〈[M]:M is an isomorphism class of a coherent OX-module〉
([M]=[M′]+[M′′],0→M′→M→M′′→0) .

Let me warn the reader that, typically, G-theory behaves quite differently from K-theory; in
any case there is a natural map (whenever everything is defined) K0(X) → G0(X) and it is
an isomorphism whenever X is a separated, regular noetherian scheme [Wei13, Theorem II.8.2].
The point of working with coherent sheaves is that, we may speak of the (co-)dimension of
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supports of coherent sheaves3. We work with X a quasiprojective, smooth scheme over a field
for simplicity although this is not necessary as one gleans from the hypotheses in [Stacks, Tag
0EFV].

Now, define:
FjK0(X) = FjG0(X)

as the subgroup generated by the subset {[F] : codimXsupp (F) > j}. These subgroups assemble
into a decreasing filtration

· · · ⊂ Fj+1K0(X) ⊂ FjK0(X) ⊂ · · ·F0K0(X) = K0(X).

The graded ring of this filtration admits a map

(1.2.1)

dim(X)⊕
j=0

CHj(X)→
dim(X)⊕
j=0

FjK0(X)/Fj+1K0(X)

given by associating to the class of Z ↪→ X, the class of the structure sheaf4 [OZ] which is a
coherent OX-module supported in Z. This map is surjective.

Lemma 1.2.2. The degree i kernel of the above map is killed by (i − 1)!. In particular the
above map is an isogeny of graded groups and is isomorphism after tensoring with Q.

Proof. For a proof, see [Stacks, Tag 0FEV] or [Ful98, Chapters 15 and 18]. �

Lemma 1.2.2 leads to an isomorphism which is often stated as part of the Grothendieck-
Riemann-Roch theorem

K0(X)Q ∼=
dim(X)⊕
j=0

CHj(X)Q

From this viewpoint, K0 contains information about algebraic cycles on X (including torsion)
but they are somehow “mixed together.” This suggests that higher K-groups are also related
to algebraic cycles and some sort of higher counterpart. For concreteness, we see from the
discussion in Remark 1.0.3, that the group of units could be considered as being part of a
theory of “higher algebraic cycles” in weight 1.

2. Motivic cohomology and algebraic K-theory

Much of this series of lectures is dedicated towards portions of the following theorem.

Theorem 2.0.1. Let X be a regular, equicharacteristic scheme. Then:

(1) there exists a functorial, exhaustive, complete and multiplicative filtration

Fil?motK(X)→ K(X),

whose graded pieces are denoted by

grjmotK(X)[−2j] := Z(j)mot(X) ∈ D(Z),

called the motivic complexes of X.
(2) Define the motivic cohomology of X by:

Hi
mot(X;Z(j)) = Hi(Z(j)mot(X)),

the spectral sequence resulting from the above filtration

Hi−j
mot(X;Z(−j))⇒ K−i−j(X)

is strongly convergent.

3Recall that the support of a quasicoherent sheaf F is the set of points of X such that Fx 6= 0. If F is a
finite type quasicoherent sheaf (hence, coherent, in noetherian settings), then the support is closed and, locally,
coincides with the vanishing of the annihilator ideal [Stacks, Tag 00L2].

4In K0(X), the structure sheaf is the alternating sum given by
∑

(−1)i[Pi] where P• → OZ is a projective
resolution of OZ.
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(3) The rationalized complexes Q(j)mot are étale sheaves. In fact, the filtration above splits
rationally.

(4) With mod-pr coefficients for any prime p, it étale sheafifies to

LétZ/pr(j)mot(X) '

{
RΓét(X;µ⊗jpr ) 1

p ∈ OX

RΓét(X; WrΩ
j
log)[−j] p = 0.

(5) the complexes Z(j)mot are Zariski-locally j + 1-truncated so that the étale sheafification
map Z(j)mot → LétZ(j)mot factors through the Zariski-local truncation where we have
an equivalence:

Z(j)mot '−→ τ6j+1
Zar LétZ(j)mot.

Remark 2.0.2 (Syntomic cohomology). The cohomology theories appearing on the right hand
side of Theorem 2.0.1(4) are the correct values of a theory of syntomic cohomology in these
cases. One of the goals of this class is to acquaint participants with the syntomic theory.

Theorem 2.0.1 implies the Lichtenbaum-Quillen conjectures on zeta values, at least up to
some difficult results on étale cohomology of global fields. Roughly speaking, Theorem 2.0.1
implies that K-theory has “enough étale/syntomic cohomology in it” in order to be related to
the zeta values of low-dimensional rings (which are, after all, the subject of these conjectures).

2.1. Historical account. Theorem 2.0.1, as stated, is the culmination of the work of many
people spanning more than 40 years of mathematics. I will try to outline my understanding of
the history of this result.

(1) The first suggestion that algebraic K-theory should have something to do with étale
cohomology was made by Lichtenbaum [Lic73, Conjecture 2.5] in the context of his
conjectures relating K-theory to zeta values. This was reiterated by Quillen in his ICM
address [Qui75] where he fleshed out the relationship in terms of a spectral sequence.

(2) As already mentioned, Tate [Tat76] established what became the relationship between
motivic and étale cohomology, in weight two and over a global field. This was then
extended by the seminal work of Merkurjev-Suslin [MS82] in the early 80s. More
precisely they proved that the Galois symbol

K2(F)/m→ H2
ét(F;µ⊗2

m )

is an isomorphism whenver m is invertible in F. Many years later, the Rost-Voevodsky
theorem embarked on the same strategy as the original proof of Merkurjev-Suslin.

(3) The first lucid account, to my knowledge, of motivic cohomology is written in [BMS87];
this is a followup to Beilinson’s notes [Bei87] where he laid out some expected properties
of motivic cohomology in the final section. It is a provocative paper which I highly
encourage everyone to read; it starts with a thought experiment: what if we knew
what topological K-theory was before singular cohomology? Before Beilinson’s papers
appeared, however, Lichtenbaum had made some conjectures on the étale versions of
the story [Lic84] in relation to zeta values at non-negative integers.

(4) Around the same time, Milne saw the logarithmic de Rham-Witt sheaves [Mil86] as
motivic objects via his investigation of the special values of zeta functions over finite
fields.

(5) Bloch and Kato were investigating analogs of the de Rham comparison theorem in the
p-adic context; they proposed their famous conjecture in [BK86] and proved some cases
of this conjecture.

(6) Bloch later defined his cycle complexes as a candidate in [Blo86] and the construction
of its relationship with algebraic K-theory was sketched in a preprint with Lichtenbaum.
Later, Friedlander and Suslin [FS02] globalized the Bloch-Lichtenbaum construction to
smooth schemes over a field;
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(7) Levine revisited Bloch’s complexes [Lev94] and gave a different method for globaliz-
ing the Bloch-Lichtenbaum spectral sequence [Lev01]. The first complete account, to
the instructor’s knowledge, of the motivic spectral sequence is Levine’s machinery of
homotopy coniveau tower [Lev06, Lev08].

(8) Around the same time a young mathematician Vladimir Voevodsky had the vision
to reproduce the motivic spectral sequence using his newly-minted theory of motivic
homotopy theory [Voe02]. He broke down the construction of the motivic spectral
sequence into a series of conjectures internal to stable motivic homotopy theory. The
required conjectures were solved by Levine in [Lev08].

(9) Geisser and Levine wrote the massively influential [GL00], describing fully p-adic mo-
tivic cohomology for smooth schemes in characteristic p > 0; we will discuss much
of this result from a modern viewpoint. One interpretation of this result is to relate
Bloch’s cycle complexes with its étale counterpart, at the prime p.

(10) Away from the prime, the counterpart to the above result is Rost-Voevodsky’s famous
theorem which resolves the Bloch-Kato, Beilinson-Lichtenbaum conjectures [Voe11,
Voe03] using the machinery of motivic homotopy theory. The influence of Suslin’s lec-
tures in Luminy regarding motivic homology cannot be underestimated in this whole
program.

Theorem 2.0.1 is one of the high points of the subject of algebraic K-theory. As stated, it is
difficult to attack Quillen’s conjecture because it posits the existence of a spectral sequence that
abuts to a particular target, but only in a range. In fact, we know that we cannot exceed this
range because of failure of K-theory to satisfy étale (hyper)descent as explained in Remark 3.2.1.

Instead, Theorem 2.0.1 makes a connection between the abstractly-defined graded pieces of
the motivic filtration with étale versions of the theory — either `-adic cohomology of Illisue-
Milne cohomology. The latter are defined independently of algebraic K-theory and, in various
context, makes explicit connection with the ζ functions of varieties [Mil86]. The rubber then
meets the road in making this connection.

2.2. What are we covering in this class? In this this class we will cover the p-adic part of
Theorem 2.0.1. We will give a somewhat self-contained proof of the following result:

Theorem 2.2.1. Let X be a regular, equicharacteristic scheme in characteristic p > 0 and let
r > 1; we consider

Z(j)mot
X ,Z/pr(j)mot

X ∈ D(XZar) j > 0 :

as Zariski sheaves of complexes on X; and denote by ε : Xét → XZar the evident morphism of
sites. Then:

(1) it étale sheafifies to

ε∗Z/pr(j)mot
X 'WrΩ

j
X,log[−j].

(2) We have an equivalence in D(XZar):

Z/pr(j)mot
X

'−→ τ6jε∗WrΩ
j
X,log[−j].

In particular, for O be a regular, local Fp-algebra, then for all r > 1 and i, j > 0:

(2.2.2) Hi
mot(O;Z/pr(j)) =

{
0 i 6= j

WrΩ
j
log,O i = j

.

(3) The filtration in Theorem 2.2.1 coincides with the Nisnevich Postinkov filtration after
modding out by pr.

In particular, the vanishing of (2.2.2) is very surprising and hard to deduce from first princi-
ples. Theorem 2.2.1 itself has numerous applications and consequences, some of which we will
explore throughout this class.
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3. Tactical overview

To start with, we discuss some notation that we will use:

3.1. Notation.

• If (C, τ) is a site, and F : Cop → Spt is a presheaf of spectra, then we shall write Fτj for
the homotopy sheaves associated to F; this can be calculated as the τ -sheafification of
the presheaf of abelian groups

U ∈ C 7→ πjF(U).

• The above construction is a special of the construction of a homotopy object in a t-
structure. We will write τ6j , τ>j for cohomological versions of the truncation functors
so that we have a cofibre sequence

τ6j → id→ τ>j+1;

this is the opposite convention to [Lur17, 1.2.1].
• we will elaborate more on the formalism of A1-invariant motivic stable homotopy theory

but to appreciate the outline of the proof we need the ∞-category ShvNis,A1(SmX; Spt)
of A1-invariant, Nisnevich sheaves of spectra on a scheme X and SH(X) the Morel-
Voevodsky category of motivic spectra; these are presentably symmetric monoidal
∞-categories and come equipped with an adjunction whose left adjoint is symmetric
monoidal.

σ∞ : ShvNis,A1(SmX; Spt)� SH(X) : ω∞

To interact with the categories involved, note that we have the symmetric monoidal
Yoneda functor h : SmX → ShvNis,A1(SmX; Spt) and the composite is denoted by

MX(Y) := σ∞h(Y).

• The essential image

σ∞ShvNis,A1(SmX; Spt) =: SHeff(X) ⊂ SH(X)

is called the subcategory of effective motivic spectra. We can tensor the above
category j-times by the Tate object

TX := cof(MX(X)
∞−→ MX(P1

X)),

to get

SHeff(X)(j) := SHeff(X)⊗ T⊗jX ,

the subcategory of j-effective motivic spectra.

3.2. Motivating the proof. In broad strokes Theorem 2.0.1, says that there is a filtration on
K-theory of a smooth k-scheme whose graded pieces are describable in syntomic terms. This
should be very surprising, primarily because K-theory does not satisfy étale descent, let alone
flat descent. The latter is a property that the syntomic sheaves enjoy. We offer the following
standard explanation:

Remark 3.2.1 (K-theory and the Brauer group). Here is a good reason why K-theory does
not satisfy étale descent and yet kind of wants to; suppose that K-theory does satisfy étale
hyperdescent. Then a reasonable construction of the motivic filtration would be just to take the
the double-speed étale-Postnikov filtration. Let ` be a prime invertible in a field L and assume
that cd`(L) = 2 (e.g. ` is odd and L is a number field). Then the spectral sequence will collapse
to give an isomorphism

K0(L;Z/`) ∼= H0
ét(L;K/`ét

0 )⊕H2
ét(L,K/`

ét
2 ).

Now, K/`ét
0 = Z/` while K/`ét

2
∼= µp since it fits into an exact sequence 0 → K/`ét

2 → Két
1
∼=

Gm
×`−−→ Két

1
∼= Gm → 0. Therefore, we conclude that H2

ét(L, µ`)
∼= Br(L)[p], while one expects

K0(L;Z/`) ∼= Z/` via the exact sequence K0(L) ∼= Z `−→ K0(L) ∼= Z→ K0(L;Z/`)→ 0.
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Nonetheless, still sticking to the same L, we have an exact sequence

0→ K2(L)/`→ K2(L;Z/`)→ L×[`]→ 0.

Assuming that L admits an `-th of unity, then the norm residue map

K2(L)/`→ H2
ét(L, µ`)

is an isomorphism by the Merkurjev-Suslin theorem [MS82]. Therefore, K2(L;Z/`) contains
the `-torsion of the Brauer group of L. We see that the Brauer groups is indeed in K-theory
but not in the degree predicted by étale descent.

Nonetheless, this is not at all hopeless — Beilinson taught us that we just have to cut “below
the weight” of a syntomic theory in order to get a motivic theory. This is an incredibly deep
insight.

Remark 3.2.2 (K-theory and algebraic cycles). One way to arrive at the above formula is to
take algebraic cycles into consideration. For simplicity, we work with a smooth scheme X over
a field where ` is invertible and ζ` ∈ F. We have a change-of-site spectral sequence

Hp
Zar(X;Hq(Z/`))⇒ Hp+q

ét (X;Z/`).

The work of Bloch-Ogus on Gersten resolutions for étale cohomology [BO74] shows that

Hp
Zar(X;Hq(Z/`)) = 0

for p > q and, furthermore,

Hp
Zar(X;Hp(Z/`)) ∼= CHp(X)/`.

If we consider the Beilinson-Lichtenbaum truncation at weight j, i.e., consider the complex
τ6jRε∗Z/` ∈ D(XZar), then we effectively ensure that the term Hj

Zar(X;Hj(Z/`)) survives the
descent spectral sequence and we get

H2j(τ6jRε∗Z/`(X)) ∼= CHj(X)/`.

3.3. Step 1: constructing the filtration. The construction of the slice filtration itself is
incredibly easy and works in massive generality. Let X be a scheme. Then any motivic spectrum
E ∈ SH(X) admits an exhaustive descending filtration

f?sliceE→ E.

For each j ∈ Z, the spectrum f jsliceE enjoys a universal property: it is the final example of a
j-effective motivic spectrum over E. This ensures that the slice filtration admits good functorial
properties: for example it assembles into a functor

SH(X)→ SH(X)(Z,>)op .

and even interacts well with multiplicative structures. We also write

sjE := cofib(f j+1
sliceE→ f jsliceE)

for the graded pieces, or the slices of E.
Applying this to E = KGL, the motivic spectrum representing (homotopy) algebraic K-

theory, we obtain a filtration

Fil?motKH(X) := (ω∞f?sliceKGL)(X).

This is our candidate filtration. Hence our candidate theory of A1-invariant motivic cohomology
will be declared to the graded layers:

Z(j)A
1

(X) := grjmotKH(X)[−2j];

these assemble into a presheaf of graded E∞-rings:

{Z(?)A
1

} : Schop → CAlg(SptN
δ

)
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Remark 3.3.1 (Comment on notation). Since K-theory is not A1-invariant in general, we

should not expect Z(?)A
1

to be the “correct” theory of motivic cohomology. Hence we refrain
from the “mot” superscript. It will turn out, as we will prove over the course of this class (at

least p-adically), that this is the right object for smooth schemes over a field so that Z(?)A
1

(X) '
Z(?)mot(X) for these X’s.

3.4. Step 2: establish connectivity bounds and structural properties. Now, we work
over a perfect field. While the filtration above exists abstractly, it is quite hard to access or
even say anything concrete about it. In order to proceed further, we introduce an auxilliary
filtration on the ∞-category ShvA1(Smk; Spt); given an object E we have a N-indexed filtration

f?usliceE→ E,

where “uslice” stands for the “unstable slice filtration.” We write

sjuE := cofib(f j+1
usliceE→ f jusliceE)

for the graded pieces. There is a way to study the unstable slice filtration geometrically, mainly
via the purity isomorphism in motivic homotopy theory. The latter lets us conclude that if X
is a smooth, irreducible k-scheme and U ⊂ X is a dense open, then the map U→ X induces an
equivalence on unstable zero-slices.

The key result that one proves is:

Theorem 3.4.1 (Levine). For a perfect field k, The following diagram commutes

SH(k) ShvA1(Smk; Spt)

SH(k) ShvA1(Smk; Spt).

ω∞

s0 s0u

ω∞

This result was conjectured by Voevodsky in [Voe02] and proved by Levine in [Lev08] via the
machinery of the homotopy coniveau tower. We instead approach it via the theory of motivic
infinite loop spaces a developed by Bachmann, Hoyois, Khan, Sosnilo, Yakerson and the author.
Equipped with this theorem and Morel’s construction of a t-structure on SH(X) [Mor05], one
can prove some relatively concrete statements about the motivic filtration:

Theorem 3.4.2. We have for any essentially smooth k-scheme X that:

(1) the spectra Z(j)A
1

(X) are, in fact, HZ-modules;
(2) if L is a finitely generated field extension of k, there is a graded multiplicative map

KM
? (L)→ H?

A1(L;Z(?)).

(3) The Zariski sheaves of spectra on X

Fil?motK|XZar

are j-connective for all j > 0.

3.5. Step 3: bring the syntomic theory into the picture. Next, we specialize to equichar-

acteristic p > 0. Let us write Z(j)A
1

X ∈ D(XZar) if we want to think of it as a Zariski sheaf on a
particular X and denote by ε : Xét → XZar the usual morphism of sites. We want to produce a
map of Zariski sheaves, at least whenever X is smooth over a perfect field k:

(3.5.1) Z(j)A
1

X /pr → ε∗WrΩ
j
X,log[−j],

which are appropriately multiplicative. This will then let us factor the differential symbol in
Milnor K-theory as.

KM
j (L)/pr → Hj

A1(L;Z/pr(j))→WrΩ
j
L,log.

The construction of (3.5.1) requires us to study the trace map

K→ TC,
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where TC is topological cyclic homology. The goal is to upgrade the trace map to a map
of filtered spectra where TC is equipped with the motivic filtration of Bhatt-Morrow-Scholze
[BMS19]. This is done by knowing connectivity bounds on both the filtered pieces of K-theory
and TC.

3.6. Step 5: Reduce everything to one vanishing statement and one surjectiv-
ity statement. We now arrive at the assembly part of the proof. We will need the fol-
lowing geometric objects: for a field F, we have the algebraic n-algebraic simplex ∆n

F :=
Spec F[T0, · · · ,Tn]/(T0 + · · ·+ Tn − 1) and its boundary divisor

∂∆n
F = Spec F[T0, · · · ,Tn]/(T0 · · ·Tn(T0 + · · ·+ Tn − 1)) ⊂ ∆n

F.

One should think of ∂∆n
F as an algebraic n−1-sphere. Therefore, one would like a formula that

imitates the “suspension isomorphism” in topology:

Hj
mot(∂∆n+1

F ;Z/p(j)) ∼= Hj
mot(F;Z/p(j))⊕Hj−n

mot (F;Z/p(j)).

This is all well and good, but to make sense of this one has to decide what motivic cohomology
on a singular scheme is. It turns out that this is possible. Hence, in order to prove the Geisser-
Levine theorem, say to prove the vanishing bounds of Theorem 2.2.1, one could try to do the
following. Proceed by induction on weight and assume that we had settled the result for j = 1.
Consider the j-fold multiplication map:

j∧
H1(∂∆n+1

F ;Z/p(1))→ Hj(∂∆n+1
F ;Z/p(j)).

By the j = 1 case we have
∧j

H1(∂∆n+1
F ;Z/p(1)) '

∧j
H1(F;Z/p(1)). Hence if j-fold multi-

plication map is surjective, we see that the factor which is not in degree (j, j) must be zero.
However, this is difficult to verify directly. Instead, following a strategy of Suslin in a different
context [Sus03] we are led to contemplate

∂∆̂n
F ⊂ ∆̂n

F

where the hat indicates semilocalization at vertices of the algebraic simplex.
From here, we set:

Hi
mot(X;Z/p(j)) =: Hi,j(X) Hi

syn(X;Z/p(j)) =: Hi,j
syn(X),

and also the Beilinson-Lichtenbaum cohomology:

Z/p(j)BL
X := τ6jε∗Fp(j)syn

X Hi,j
BL(X) := Hi(Z/p(j)BL

X (X)).

The proof can then be organized into the following diagram (compare to [HW19, Proof of
Theorem 2.37]):

(3.6.1)

Hn,n
Z (∂∆p

F) Hn,n(∂∆p
F) Hn,n(∂∆̂p

F) Hn+1,n
Z (∂∆p

F) Hn+1,n(∂∆p
F)

Hn,n
BL,Z(∂∆p

F) Hn,n
BL (∂∆p

F) Hn,n
BL (∂∆̂p

F) Hn+1,n
BL,Z (∂∆p

F) Hn+1,n
BL (∂∆p

F).

Then the Geisser-Levine theorem amounts to:

Theorem 3.6.2. For any field F of characteristic p, the following hold:

(1) The map Hn,n(∂∆̂p
F)→ Hn,n

syn(∂∆̂p
F) is surjective;

(2) H>n,n(∂∆̂p
F) = 0.

Theorem 3.6.2 is by no means easy, but it becomes clear what we are supposed to prove.
The first statement is a combination of an old result of Kato [Kat82] and a newer result about
left Kan extension of syntomic cohomology [AMMN20]. The second statement follows from a
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general result about effective motivic spectra, proved using some parts of the coniveau tower
[Lev08].
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theory (Strasbourg, 1992)
[Lev01] , Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001),

no. 2, pp. 299–363
[Lev06] , Chow’s moving lemma and the homotopy coniveau tower, K-Theory 37 (2006), no. 1-2,

pp. 129–209, https://doi.org/10.1007/s10977-006-0004-5

[Lev08] M. Levine, The homotopy coniveau tower, J. Topol. 1 (2008), pp. 217–267, preprint
arXiv:math/0510334

[Lic73] S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic K-theory, pp. 489–501

[Lic84] S. Lichtenbaum, Values of zeta-functions at nonnegative integers, Number theory, Noordwijkerhout
1983 (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 127–

138, https://doi.org/10.1007/BFb0099447
[Lur17] J. Lurie, Higher Algebra, September 2017, http://www.math.harvard.edu/~lurie/papers/HA.pdf

[Mil86] J. S. Milne, Values of zeta functions of varieties over finite fields, Amer. J. Math. 108 (1986), no. 2,

pp. 297–360, https://doi.org/10.2307/2374676
[Mor05] F. Morel, The stable A1-connectivity theorems, K-Theory 35 (2005), no. 1-2, pp. 1–68

[MS82] A. S. Merkurjev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue

homomorphism, Dokl. Akad. Nauk SSSR 264 (1982), no. 3, pp. 555–559
[Qui72] D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann.

of Math. (2) 96 (1972), pp. 552–586, https://doi.org/10.2307/1970825

[Qui75] , Higher algebraic K-theory, pp. 171–176
[Qui10] , Higher algebraic K-theory: I [MR0338129], Cohomology of groups and algebraic K-theory,

Adv. Lect. Math. (ALM), vol. 12, Int. Press, Somerville, MA, 2010, pp. 413–478
[Stacks] The Stacks Project Authors, The Stacks Project, 2017, http://stacks.math.columbia.edu

http://arxiv.org/abs/arXiv:2003.12541
https://doi.org/10.1007/BFb0078364
https://doi.org/10.1007/BFb0078364
http://www.numdam.org/item?id=PMIHES_1986__63__107_0
https://doi.org/10.1016/0001-8708(86)90081-2
http://www.numdam.org/item?id=PMIHES_1967__33__59_0
http://www.numdam.org/item?id=PMIHES_1967__33__59_0
https://doi.org/10.1215/S0012-7094-87-05430-5
https://doi.org/10.1007/s10240-019-00106-9
https://doi.org/10.1007/s10240-019-00106-9
http://www.numdam.org/item?id=ASENS_1974_4_7_2_181_0
http://arxiv.org/abs/arXiv:2405.03578
https://doi.org/10.1016/S0012-9593(02)01109-6
https://doi.org/10.1016/S0012-9593(02)01109-6
https://doi.org/10.1007/s002220050014
https://doi.org/10.1007/s10977-006-0004-5
http://arxiv.org/abs/math/0510334
https://doi.org/10.1007/BFb0099447
http://www.math.harvard.edu/~lurie/papers/HA.pdf
https://doi.org/10.2307/2374676
https://doi.org/10.2307/1970825
http://stacks.math.columbia.edu


LECTURES 1-3 13

[Sus03] A. Suslin, On the Grayson spectral sequence, Tr. Mat. Inst. Steklova 241 (2003), no. Teor. Chisel,

Algebra i Algebr. Geom., pp. 218–253

[Tat71] J. Tate, Symbols in arithmetic, pp. 201–211
[Tat76] , Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), pp. 257–274, https:

//doi.org/10.1007/BF01390012

[TT90] R. W. Thomason and T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories,

The Grothendieck Festschrift III, Progress in Mathematics, vol. 88, Birkhäuser, 1990, pp. 247–435
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