LECTURES 10-12

ELDEN ELMANTO

Last time, we built a multiplicative, functorial filtration

EcSH(S) - = fr. E—= fi1E... 5 fQ E— filE- = fi.E;

slice slice slice™
SH(S) — SH(S)%>)

called the slice filtration. Taking associated graded pieces then produces another lax sym-
metric monoidal functor

E € SH(S) = sliicB(:= cofib(fi1.E — fllic.E));

slice

op
)

SH(S) — SH(S)Z"™.
We will specialize to S = Spec k where k is a field and plug in E = KGL. But to make full

use of the properties of the slice filtration, we need to construct KGL as a E-object in SH(k).
To state the precise universal property of KGL, we note that have an adjunction

0% : Shvyis a1 (Smg; Spt) = SH(S) : w™;

such that applying the (spectral) Yoneda image of Y € Smg gives Mg(Y) € SH(S). One should
think of w*E as extracting the “O-th spectrum” of the cohomology theory of E. Under certain
hypotheses on E and S, w® basically “determines” the entire structure of E.

1. K-THEORY REVISITED

Throughout, & is a field. Our first goal is to explain K-theory in motivic terms. This consti-
tutes building the motivic spectrum KGL in a manner that makes it manifestly multiplicative.
This is an important step in our program — the multiplicative structure in motivic cohomology
is inherited from the multiplicative structure in KGL. This is one advantage of our treatment
of motivic cohomology, that it avoids some thorny multiplicative issues that would arise if it
had been build via algebraic cycles.

Proposition 1.0.1. There exists a unique B -algebra in motivic spectra KGL € SH(k) char-
acterized as:

(1) KGL satisfies Bott periodicity;

(2) there is an Eo-equivalence: w>KGL ~ K € Shvyigs a1 (Smy; Spt).

Proposition 1.0.1 is an enhancement of the construction of KGL outlined in the previous
lecture and uses, crucially, SH(k) as symmetric monoidal co-category.

1.1. The multiplicative version of KGL. Let us first explain a coherent version of Bott
periodicity in algebraic geometry. Noting that K € Shvyis a1 (Smy) is an E-algebra, we can
form
Modk (k) := Modk Shvyis a1 (Smyg; Spt),
the oco-category modules over K-theory. We have the free-forgetful adjunction
— ® K : Shvyig a1 (Smy; Spt) &2 Modk (k) : U.

The Bott element is the map
Bo :P'/oo =T = K
1
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classifying the Bott class [O] — [0(—1)], noting that O = O(—1) away from the point at co. As
explained in the previous lecture it is homotopic to the Bass map. Applying the above left
adjoint, we obtain a map that we abusively denote

Bo:T®K — K
in Modxk (k).

Definition 1.1.1 (Bott periodic objects). Let M be a Modk(k)-module in presentable oo-
categories (we will be very explicit about the only example one cares about in a minute), then
the subcategory

Pg, M CM,
of those E € M such that 8§ : E — map(T,E) is an equivalence is the category of Bott
periodic K-modules. Here,
map(T, =) : M - M
is right adjoint to the tensoring functor

(TeoK)®—:M— M.

We want to make precise that KGL is the universal example of a Bott periodic object whose
“underlying sheaf of spectra” is K-theory. To make sense of this, consider M = Mod (k)[T 1],
the universal Modk (k)-module where the functor — @ (T ® K) acts invertibly. We have a
symmetric monoidal functor

W), : Modg (k) — Modg (k)[T™1].

Note that ¥ preserves Bott periodic objects and thus defines a symmetric monoidal functor
on subcategories:

W), : Modg (k) — Modg (k)[T™].
Lemma 1.1.2. The functor
Uy, : Pg, (Modk (k) — Pg, (Modk (k)[T™]).

18 an equivalence of symmetric monoidal co-category. In particular, any Bo-periodic Eo-algebra
in Cy defines, uniquely, a Bo-periodic Eoo-algebra in Modxk (k)[T~1].

Indeed, both satisfy the same universal properties. To relate this construction to SH, denote
by @ the inverse to V. We have a commutative diagram

P, (Modx (k) +—“—— P, (Modx (k)[T~])

(1.1.3) J l

Shvis,ar (Smg) ¢—— Shvig a1 (Smy,)[T~'] = SH(k),

where the vertical arrows are “forgetful” type functors; all the functors in sight are lax symmetric
monoidal functors being right adjoint of symmetric monoidal functors.

We now produce KGL as an E-algebra in SH(k). The object K € Modk (k), by virtue of
being a unit object, is an E.,-algebra. It is also Bott periodic by the previous lecture. Hence
it defines uniquely an object

KGL € Pg, (Modg (k)[T™1]).

Applying the right vertical arrow of (1.1.3) to this object and, abusively, denoting the image of
KGL under this functor we obtain a E.-algebra in KGL whose w® is K-theory. With slightly
more work, one can show that the groupoid conisisting of a pairs (E,«) where E € CAlgk (k)
and «a : E — w*KGL such that E is Bott periodic is contractible, proving uniqueness.
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1.2. Bott periodicity and the slice tower. We note that in SH(k) being Bott periodic
means that the Bott map KGL — T®~! @ KGL is an equivalence in SH(k). In particular, we
also have an equivalence

T @ KGL = KGL.

Therefore its values as a cohomology theory can be easily calculated:

KGLPY(X) = [M(X), 2P 7KGL)
> [My(X), 2PT24—249KGL)
= [Mp(X)[2q — p], T*? @ KGL]

1

Tog—pwKGL(X)
Kag—p(X).

This gives us another way to describe the slices of KGL. First, we note that, from playing
with adjunctions, one can prove the following

Lemma 1.2.1. We have functorial (in E) equivalences:

sTILice(T®E) T®fn 1E shce(T®E) T@S” 1E

slice slice

Combining this with the Bott periodicity yields an equivalence

T® e KGL = f7.. . KGLx
and similarly for the slices. Now, set
kgl = ihceKGL

by the lax symmetric monoidal properties of slices, it is a E —algebra We have a map ( :

T ® kgl — kgl which is homotopic to T ® kgl B@i‘% KGL ® kgl acty kgl. By construction, there

is thus a commutative diagram

T ® kgl = [ KGLx

X can

kgly

More generally there are, for all n > 0, compatible such commutative diagram in which T is
replaced by T®" and the Bott map 3 is replaced by the n-fold iterate A" : T®" @ kgl — kgl. We
thus obtain the desired equivalence between the N-indexed part of the slice filtration on kgl:

fhicekel = kgl - e lkgl < fhookel « frlkel o

and the Bott tower/filtration

T* ® kgl := kgl + -+ + T®" ! @ kg 1 A48 pon gy l<—T®”+1kgl<—

In particular, taking associated gradeds, we also obtain a description of the slices of kgl as Tate
twists of the zero-th slice:

kgl ~ T® @ s, kel j=0.

shce slice

Remark 1.2.2 (Multiplicative structures and the Bott tower). In a sense, the Bott filtration
is a much more elementary object than the slice tower: it exploits Bott periodicity for algebraic
K-theory and no other structural features of SH. However, producing a coherent multiplicative
structure on the Bott tower is challenging — at least the author does not know how to do this
without the slice tower.
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2. MOTIVIC COHOMOLOGY

Having discussed the slice filtration and KGL as a E.-algebra we can now speak of motivic
cohomology as a multiplicative, graded object. By abstract nonsense, the functor

w™ : SH(X) — Shvyis a1 (Smx)
admits a lax monoidal structure which induces a lax monoidal structure on filtered
w™ : SH(X) %2 5 Shyyg a1 (Smy ) %)™
and graded objects

w™ SH(X)Z&op — SthisAl(SmX)Z&op
Construction 2.0.1 (The motivic filtration on K-theory). Let k be a field. The motivic
filtration on K-theory is defined as the E..-algebra in filtered sheaves:

Fil}, o K 1= w™ fJi.ckel € CAlg(Shvyis a1 (Smx ) ™)),

mot slice
Remark 2.0.2 (kgl versus KGL). For any smooth k-scheme Y, Mg(Y) is O-effective by defini-
tion. Therefore

w™kgl(Y) ~ w™*KGL(Y) ~ K(Y).
Therefore, the effective version of KGL is enough is capture the K-theory of schemes and the
filtration above is N-indexed.

Construction 2.0.3 (Motivic cohomology). Let k be a field. We define a presheaf of N-indexed
graded E.-algebras

Z(*) : Sm;” — grCAlg =: CAlg™=)",
as the graded presheaves obtained by:

W g1 KGL(~ w™ (T @ s0.kgl)) =: Z(x)[24] € CAlg(Shvyis a1 (Smx)”"™).

slice slice

The definition of motivic cohomology that we offer here is very abstract and so it is hard to
say that it has anything to do with algebraic geometry. For example, we saw that even though
higher K-groups are quite mysterious, we know that at the very least it has something to do
with vector bundles; what about for motivic cohomology? We will address these issues, but one
should appreciate that this definition, by virtue of being abstract, produces a very well-behaved
object, admitting a very canonical multiplicative structure and has a direct relationship with
algebraic K-theory.

Our immediate goals are to relate motivic cohomology to two invariants which we explained
are related to K-theory at the beginning of the story: the determinant and rank.

3. Z-LINEARITY OF MOTIVIC COHOMOLOGY

We now prove the first nontrivial property of motivic cohomology: that it is not just a
presheaf of spectra, but rather a presheaf valued in D(Z), i.e., it admits a Z-linear structure.
To do this, we need to get a more concrete handle on algebraic K-theory.

3.1. Representability of K-theory. To do so we denote by
Gr,, := colim Gr,, (A™) Gro := colim Gr,,.
m n
Here, Gr,,(A™) is the Grassmanian variety of n-planes in A™-space. By convention, a point
T — Gr,(A™) classifies a map of quasicoherent sheaves over T, U — O™ such that O2™ /U

is locally free of rank m — n. The following is one of the key first results in motivic homotopy
theory.

Theorem 3.1.1 (Grassmanian models for K-theory). On any regular scheme S, the maps of
presheaves (of pointed spaces on Smg ):

Z x Groo - Z % BGLy 5 K.

are Lizay a1-equivalences.
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Proof. We prove this result in steps. Without loss of generality!, it suffices to evaluate the
above map of presheaves on R a local ring of a smooth S-scheme; actually we only need to
guarantee Ko(R) = Z so that (][, .y BGL,)8™ ~ K>o(R).

First, the reader should be warned that Z x BGLy, does not come equipped with an evident
monoid structure; even worse: it is not even a presheaf of H-spaces when one passes to the
homotopy category. Indeed, 7 of this presheaf of spaces is GL,, which is evidently not an
abelian group, but m; of any monoid must be abelian. Therefore, there is no chance that ¢ is
an equivalence without something like Ly:.

We now use Theorem 3.1.3. Applying Ly: to the comparison map ZxBGL — (]]
and evaluating at R is given by the colimit of the map

Z x BGLo (RIA®]) 25 (] BGL.(RIA®)))%P.

neN BGLn)grp

We claim that this colimit is an equivalence. Nikolaus’ refinement of the group completion
theorem [Nik17, Proposition 6] states that it is indeed an equivalence as soon as 1 (colimaep Z X
BGL(R[A®]),x) is abelian at any base point. Since sifted colimits commute with products,
the connected components of the geometric realization is just Z and 7, at any connected
component are all isomorphic via “translation” for any n > 1. Therefore, we need only prove
that 7y (colimpor BGL(R[A®], %) is abelian. By general properties of sifted colimits?, we see
that
Wl(cgljgn BGL(R[A®], %) = coeq(GL(R[t]) = GL(R)),

where the maps are given by setting ¢ = 0 and t = 1. Whitehead’s theorem reviewed in
Theorem A.0.2 then let us conclude: since the commutator of GL(R) are given by the elementary
matrices, it suffices to observe that any elementary matrix can be homotoped to the identity.

Now, to prove that i is an equivalence. Just as in topology, we have the Stiefel scheme
of frames, St,(A™) whose points T — St,(A™) consists of pairs U — O™ a point of the
Grassmanian and OF™™" — 02™ — OF™/U an epimorphism. We have the projection map
St (A™) — Gr,(A™) which is evidently a GL,,-torsor. This map is explicitly given by the
following quotients (taken in stacks, but the resulting objects are schemes because of freeness
of the actions):

Sty (A™) = [GLysm/GLy] = Grn(A™) = [GLyjm/GLy X GLy].

Now, the key observation is that because any GL,-torsor which is étale locally trivial is also
Zariski locally trivial (by Hilbert theorem 90), the above map identifies with the following
Zariski sheaf quotients:

Sty (A™) = Lzar(GLytm/GLy) = Grp(A™) = Lyar(GLygm /GLy x GLyy,).

One then shows that Ste, (A™) ~ colim,, St,,(A™) is Al-contractible (using the same arguments
as in topology) and thus it is a Zariski sheaf with free GL,,-action whose quotient is Gr,(A™).
This then gives us the Zariski-local identification between the infinite Grassmanian Gr, and
BGL,,.

O

We have used the following construction in the above proof.

Construction 3.1.2. Consider the following cosimplicial scheme

A® : [n] = A" = SpecZ[To, Ty, -+, Tl /(> Ty = 1)(= A).
=0

ITo be precise, we need to know two things: 1) that the presheaves involved are locally finitely pre-
sented/finitary and that 2) the Zariski site of any regular scheme is hypercomplete. The latter is not quite
true but it is true if such a scheme is finite dimensional but using 1) we may places ourselves in such a situation.
In fact this hypercompleteness assertion is true without regularity hypotheses [CM19].

20n the lowest homotopy group, it is calculated as a coequalizer.
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The point of writing A7 in this manner is that it naturally acquires faces and degeneracies in
the obvious way. For example, for each fixed n > 1, looking at

V(T;) = A" i=0,---,n,

defines ¢+ 1 divisors, abstractly isomorphic to A"~ 22 A"~1, We call an arbitrary intersections
of subschemes of this form (for any n > 1) the faces. For any scheme S, we set

Aé = A* X SpecZ S7
and we speak of the faces of Ag in the same manner.
The following result makes Ly1 a special kind of localization.
Theorem 3.1.3. The endofunctor L1 : PSh(Smg) — PSh(Smyg) identifies with the endofunctor
X = Cglan(— x A®)
Proof sketch. The key point is to observe that Ly1X is Al-invariant. To see this we can write
down, for any ring R (in fact for any scheme), an explicit simplicial homotopy
h® : R[t][A®] — R[t][ATY
between the identity map of R[t][A®] and the map R[t][A®] =0, R[A®] — R[t][A®]. The maps
h' is given by
L f s ai(f) f € R[A"], o' is the degeneracy
HTig1+-+To) f=t,

and extended to a map out of R[A®][t] by universal properties. Taking geometric realization of
X(R[A®]) converts these simplicial homotopies to an equivalence of spaces. O

Since sifted colimits preserve products, we have the following;:

Corollary 3.1.4. The endofunctor Ly preserves products. In particular, it preserves presheaves
of commutative monoids.

3.2. Birational motives. To give s*kgl a Z-linear structure, we need only prove that skgl
admits a Z-linear structure. To do so, we consider the following map in the world of Al-invariant
Nisnevich sheaves on Smy,

(3.2.1) K ~ w®kgl — w>skgl;

via Theorem 3.1.1 we have the projection map K — L1 7,;(ZXGrog) = Lt 74, Z =~ R 740 (—; Z);
this latter map is evidently multiplicative: it is simply the rank map. We now ask if there is a
multiplicative factorization of (3.2.1) through the latter projection. Somewhat surprisingly, it

will boil down to birational geometry, in particular the rationality of the grassmanians.
Definition 3.2.2. Consider the collection
Bir, = {2°°(f;): f: U= X is a dense open, X is irreducible} C Shvy;s 41 (Smy)?

1

We have the localization endofunctor
Lbir : ShVNis,Al (Smk)Al — ShVNis,Al (Smk)Al,

which formally inverts Biry. We say that a map f : E — F in Shvyis a1 (Smy) is a birational
equivalence if Ly;, f is an equivalence.

Remark 3.2.3. The localization Ly;, is a monoidal localization: this boils down to the fact
that f x id is birational whenever f is.

The following Lemma is easy given the relative purity theorem (which we will discuss next)
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Lemma 3.2.4. Let k be a perfect field. For E € SH(k), the spectrum w™s"E is Ly, -local. In
particular, if f: F — w>®sE is a morphism in ShVNisAl(Smk)A1 and F — G is a birational
equivalence, then there is a unique factorization of f through G. If F — G is a map of Eoo-
algebras, then so is the factorization.

Lemma 3.2.4 is the prototype of what will happen next in this class: we will try to control
the slice filtration using birational geometry, bridged by motivic infinite loop space theory. The
way one should think about Lemma 3.2.4 is that w™>s°E is a birational invariant; we will soon
explore the invariant nature of w>s/E for all E. First, we state the relative purity theorem of
Morel and Voevodsky.

Theorem 3.2.5 (Relative motivic purity). Let S be a base scheme and i : Z — X is a closed
immersion of smooth X-schemes. Then there is a canonical Lzar Nis-equivalence

VN:) X
V(Ni)\OZ - X\Z°

We will discuss Theorem 3.2.5 in the next class; take it for granted in these set of notes.
Proof of Lemma 3.2.4. The map f : F — w*>s"E is adjoint to a map ¢>°F — s"E. The functor

0 preserves colimits, therefore if the following statement proves the claim: if U — X is an
open immersion where X is a smooth, connected scheme, then

cofib(My,(U) — M (X)) € SH® (k)(1).
For then,
Maps(M(U), s°E) ~ Maps(My(X), s’E)
for all E.
Let Z — X be the complement of U. Since k is perfect we may stratify Z:

fczhrc..-cztcz’=17

such that Z* \ Z*~! is smooth. In this way, we may assume that U has a smooth complement
so that we may appeal to Theorem 3.2.5 and conclude that

cofib(M(U) = My (X)) =~ cofib(Mg(V(N;) \ 0z) = V(N;)).

If N; was trivial of rank ¢ > 1, then the latter is equivalent to T¢ ® My(Z) which is indeed in
SH®™ (k)(> 1). We then use Zariski descent to reduce to this case.
O

We explain some easy structural properties of motivic cohomology.
Theorem 3.2.6. Let k be a perfect field. There is a multiplicative map of presheaves on Smy,:
RIZar (—; Z) — Z(0)™°".
In particular, motivic cohomology promotes to a functor
Z(%) : Sm;” — grCAlg(D(Z)).

Proof. Theorem 3.1.1 implies that the rank map K>¢ — RI'zar(—; Z) ~ RI'nis(—; Z) is Ly, -local

because the infinite Grassmanian is a rational variety. Therefore, the map K59 — woosghceKGL

factors through the rank map uniquely. The result then follows from Lemma 3.2.4. g

3.3. The unstable slice filtration. We now explain how to contextualize the theory of bira-
tional motives. The starting point is an “unstable” analog of the slice filtration:

Definition 3.3.1. Define
Shvyis a1 (Smy; Spt)(n) := T®" @ Shvyis a1 (Smy; Spt) n>=0
so that we have subcategories

"'ShVNis,Al (Smk; Spt)(n) - ShVNis,Al(Smk§ Spt)(n—l) c---C ShVNis,Al(Smk§ Spt)(O) = ShVNis,Al (Smk; Spt)-
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By the same reasoning as in the case of SH(k) we have a lax symmetric monoidal functor

Shvis,a1 (Smg; Spt) — Shvyis a1 (Smy; Spt) &)™

Ee ShVNis,A1 (Smk; Spt) = &lsliceE — f:_l E-..— gsliceE'

slice

called the unstable slice filtration.

The unstable slice filtration is somewhat more concrete than its stable counterpart because
it admits a nice geometric interpretation. We begin by recalling the following easy definition of
codimension in algebraic geometry.

Definition 3.3.2. Let x € X. Then
codimx (z) = dim(Ox ).
We will use the following often:

Lemma 3.3.3 (Codimension formula). Let f : X — Y be a flat morphism of locally noetherian
schemes and x € X then

codimx (z) = codimy (f(z)) + codmx,,, ().
The next definition refines the usual notion of a birational equivalence.

Definition 3.3.4 (n-birational equivalences). Let n > 0, then an open immersion U < X of
schemes is said to be a n-birational if for any = € X with codimx (z) < n.

Via the usual formalism, we have the endofunctor of n-birational localization
L. - Shvyis a1 (Smy; Spt) — Shvis a1 (Smy; Spt).
Using the relative purity theorem one can prove:

Proposition 3.3.5. Let k be perfect. The following subcategories of Shvyis a1 (Smy; Spt) are
equivalent:

(1) the subcategory of Shvyis a1 (Smy; Spt) generated under colimits and retracts by objects
of the form cofib(f) where Ly (f) is an equivalence.
(2) Shvyis a1 (Smy; Spt)(n).

Furthermore, for each E € Shvyis a1 (Smy; Spt) we have a fibre sequence

TieE = E—=LLE 0.

uslice

4. CONNECTIVITY BOUND

We will work towards the following nontrivial connectivity bound which is necessary for our
approach to the Geisser-Levine theorem.

Theorem 4.0.1. Let k be a field. Then

Fill .

K|Smk S ShVNiS(Sl’nk)2j.
Concretely: this means that for any X € Smy, we have the following vanishing bound:

T (Fil KX) =0 n<j—1-dim(X).

mot

This result is not at all clear because the slice filtration is a rather abstract construction.
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4.1. Reductions. To prove Theorem 4.0.1, we will have to prove a much more general state-
ment connectivity statement about motivic spectra and its slices. It is given as follows:

Theorem 4.1.1. Let k be a perfect field. Fiz E € SH(k) and g > 0. Suppose that for all p < q
we have that
BB~ 0
then
N5 ) f9(E) ~ 0.

The proof of Theorem 4.1.1 follows from a statement about A'-invariant Nisnevich sheaf
whose proof relies on a result of Morel’s and a conjecture about w*> and f¢ made by Voevodsky,
and later proved by Levine. The former is the following statement.

Lemma 4.1.2 (Connectivity criterion for unstable j-effectives). Let k be a perfect field. Let
E € Shvnis,ar (Smg)(j). If z¥5Q% E~0, then z¥5E ~ 0.

The key result which underlies Lemma 4.1.2 is the following theorem due to Morel.

Theorem 4.1.3 (Morel’s connectivity theorem). Let k be a perfect field and let E be an A'-
imwvariant Nisnevich sheaf on Smy. Then the following are equivalent:

(1) E is Nisnevich-locally j-connective;
(2) T, (E(L)) =0 for alln < j—1 and L a finitely generated field extension of k.

Theorem 4.1.3 falls within the tradition of Gersten’s conjecture within algebraic K-theory.
The underlying philosophy is that A'-invariance and Nisnevich descent is enough to guarantee
that E is controlled by its values on fields. The next result sounds somewhat technical, but is
rather deep conjecture of Voevodsky’s.

Theorem 4.1.4 (Levine). For a perfect field k, The following diagram commutes

SH(k) —2= Shv: (Smy; Spt)

‘ I

SH(k) —“= Shv,: (Smy; Spt).
Theorem 4.1.4 asserts that taking slices commutes with taking “G,,-infinite loop spaces.”
We will motivate this statement and give its proof in a later lecture. Assuming Theorem 4.1.4
and Lemma 4.1.2 we proceed as follows:

Proof of Theorem 4.1.1. Our goal is to prove that the Al-invariant Nisnevich sheaf w® f9E
is connective in the Nisnevich ¢-structure. By Theorem 4.1.4 we deduce that w™ fiE €
Shvyis a1 (Smy)(¢g). Hence, by Lemma 4.1.2, to prove that it is connective in the Nisnevich
t-structure it suffices to prove this after applying Qg;m to w*® f?E. Let L be a finitely generated
field extension L over k. Then, by adjunction,

ENIS(Q%mWOquE)(L) = Wn(Ma'pSSH(k) (Ggq [n], f1(E)) ~ Wn(MapSSH(k)(G%q [n], E),

n

which is zero by the assumption on E. Via Morel’s Theorem 4.1.3, we conclude that Qg;mwoo fIE
is indeed connective. O

Proof of Theorem 4.0.1. Apply Theorem 4.1.4 to E = KGL[—¢] by noting that

Nis _
T KGL =m, 5K,

which is zero when p — 2¢ < 0 because all schemes in sight are regular. U
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APPENDIX A. SOME LINEAR ALGEBRA

We have indicated the origins of Ky, now we explain K;. The group GL(R) is the group of
matrices with 1’s on the diagonal but where there are only finitely many non-zero entries. Here
is the definition of Kj:

Definition A.0.1. [Bass-Schaunel] Let R be an associative, unital ring. Then K;(R) :=
GL(R)/[GL(R), GL(R).

To get a better handle on the commutator subgroup, we recall that the elementary matrix
ei;j(x) where z € R is the matrix in GL(R) where the only nontrivial spot away from the diagonal
is ¢j where the entry is z. We set E(R) € GL(R) the subgroup generated by elementary matrices.
Intuitively, E(R) is the subset of GL(R) of those matrices which may be reduced to the identity
matrix using only row operations.

Lemma A.0.2 (Whitehead’s Lemma). Let R be an associative, unital ring. Then
E(R) = [GL(R), GL(R)]
Proof. For E(R) C [GL(R), GL(R)] one can calculate

eij(z) = [eir (), ex; (1)].
Now, Whitehead observed that one can write

g o ]fr 07][he)"t -1
[gah] - |:0 91:| |:0 h1:| |: 0 hg :
Note that each the terms in the product are indeed in E(R). O
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