
LECTURES 10-12

ELDEN ELMANTO

Last time, we built a multiplicative, functorial filtration

E ∈ SH(S) 7→ · · · → fnsliceE→ fn−1
slice E · · · → f0

sliceE→ f−1
sliceE · · · =: f?sliceE;

SH(S)→ SH(S)(Z,>)op ,

called the slice filtration. Taking associated graded pieces then produces another lax sym-
metric monoidal functor

E ∈ SH(S) 7→ s?sliceE(:= cofib(fn+1
slice E→ fnsliceE));

SH(S)→ SH(S)Z
δ,op

.

We will specialize to S = Spec k where k is a field and plug in E = KGL. But to make full
use of the properties of the slice filtration, we need to construct KGL as a E∞-object in SH(k).
To state the precise universal property of KGL, we note that have an adjunction

σ∞ : ShvNis,A1(SmS; Spt)� SH(S) : ω∞;

such that applying the (spectral) Yoneda image of Y ∈ SmS gives MS(Y) ∈ SH(S). One should
think of ω∞E as extracting the “0-th spectrum” of the cohomology theory of E. Under certain
hypotheses on E and S, ω∞ basically “determines” the entire structure of E.

1. K-theory revisited

Throughout, k is a field. Our first goal is to explain K-theory in motivic terms. This consti-
tutes building the motivic spectrum KGL in a manner that makes it manifestly multiplicative.
This is an important step in our program — the multiplicative structure in motivic cohomology
is inherited from the multiplicative structure in KGL. This is one advantage of our treatment
of motivic cohomology, that it avoids some thorny multiplicative issues that would arise if it
had been build via algebraic cycles.

Proposition 1.0.1. There exists a unique E∞-algebra in motivic spectra KGL ∈ SH(k) char-
acterized as:

(1) KGL satisfies Bott periodicity;
(2) there is an E∞-equivalence: ω∞KGL ' K ∈ ShvNis,A1(Smk; Spt).

Proposition 1.0.1 is an enhancement of the construction of KGL outlined in the previous
lecture and uses, crucially, SH(k) as symmetric monoidal ∞-category.

1.1. The multiplicative version of KGL. Let us first explain a coherent version of Bott
periodicity in algebraic geometry. Noting that K ∈ ShvNis,A1(Smk) is an E∞-algebra, we can
form

ModK(k) := ModKShvNis,A1(Smk; Spt),

the ∞-category modules over K-theory. We have the free-forgetful adjunction

−⊗K : ShvNis,A1(Smk; Spt)� ModK(k) : U.

The Bott element is the map

βO : P1/∞ = T→ K
1
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classifying the Bott class [O]− [O(−1)], noting that O ∼= O(−1) away from the point at ∞. As
explained in the previous lecture it is homotopic to the Bass map. Applying the above left
adjoint, we obtain a map that we abusively denote

βO : T⊗K→ K

in ModK(k).

Definition 1.1.1 (Bott periodic objects). Let M be a ModK(k)-module in presentable ∞-
categories (we will be very explicit about the only example one cares about in a minute), then
the subcategory

PβO
M ⊂M,

of those E ∈ M such that β∗O : E → map(T,E) is an equivalence is the category of Bott
periodic K-modules. Here,

map(T,−) : M→M

is right adjoint to the tensoring functor

(T⊗K)⊗− : M→M.

We want to make precise that KGL is the universal example of a Bott periodic object whose
“underlying sheaf of spectra” is K-theory. To make sense of this, consider M = ModK(k)[T−1],
the universal ModK(k)-module where the functor − ⊗ (T ⊗ K) acts invertibly. We have a
symmetric monoidal functor

Ψk : ModK(k)→ ModK(k)[T−1].

Note that Ψk preserves Bott periodic objects and thus defines a symmetric monoidal functor
on subcategories:

Ψk : ModK(k)→ ModK(k)[T−1].

Lemma 1.1.2. The functor

Ψk : PβO
(ModK(k))→ PβO

(ModK(k)[T−1]).

is an equivalence of symmetric monoidal∞-category. In particular, any βO-periodic E∞-algebra
in Ck defines, uniquely, a βO-periodic E∞-algebra in ModK(k)[T−1].

Indeed, both satisfy the same universal properties. To relate this construction to SH, denote
by Φk the inverse to Ψk. We have a commutative diagram

(1.1.3)

PβO
(ModK(k)) PβO

(ModK(k)[T−1])

ShvNis,A1(Smk) ShvNis,A1(Smk)[T−1] = SH(k),

Φk

ω∞

where the vertical arrows are “forgetful” type functors; all the functors in sight are lax symmetric
monoidal functors being right adjoint of symmetric monoidal functors.

We now produce KGL as an E∞-algebra in SH(k). The object K ∈ ModK(k), by virtue of
being a unit object, is an E∞-algebra. It is also Bott periodic by the previous lecture. Hence
it defines uniquely an object

KGL ∈ PβO
(ModK(k)[T−1]).

Applying the right vertical arrow of (1.1.3) to this object and, abusively, denoting the image of
KGL under this functor we obtain a E∞-algebra in KGL whose ω∞ is K-theory. With slightly
more work, one can show that the groupoid conisisting of a pairs (E, α) where E ∈ CAlgK(k)
and α : E→ ω∞KGL such that E is Bott periodic is contractible, proving uniqueness.
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1.2. Bott periodicity and the slice tower. We note that in SH(k) being Bott periodic
means that the Bott map KGL→ T⊗−1 ⊗KGL is an equivalence in SH(k). In particular, we
also have an equivalence

T⊗KGL
'−→ KGL.

Therefore its values as a cohomology theory can be easily calculated:

KGLp,q(X) ∼= [Mk(X),Σp,qKGL]
∼= [Mk(X),Σp+2q−2q,qKGL]
∼= [Mk(X)[2q − p],T⊗q ⊗KGL]
∼= π2q−pω

∞KGL(X)

= K2q−p(X).

This gives us another way to describe the slices of KGL. First, we note that, from playing
with adjunctions, one can prove the following

Lemma 1.2.1. We have functorial (in E) equivalences:

fnslice(T⊗ E) ' T⊗ fn−1
slice E snslice(T⊗ E) ' T⊗ sn−1

sliceE

Combining this with the Bott periodicity yields an equivalence

T⊗ fn−1
slice KGL

'−→ fnsliceKGLX

and similarly for the slices. Now, set

kgl := f0
sliceKGL;

by the lax symmetric monoidal properties of slices, it is a E∞-algebra. We have a map β :

T⊗ kgl→ kgl which is homotopic to T⊗ kgl
β⊗id−−−→ KGL⊗ kgl

act−−→ kgl. By construction, there
is thus a commutative diagram

T⊗ kgl f1
sliceKGLX

kglX .

'

β can

More generally there are, for all n > 0, compatible such commutative diagram in which T is
replaced by T⊗n and the Bott map β is replaced by the n-fold iterate βn : T⊗n⊗kgl→ kgl. We
thus obtain the desired equivalence between the N-indexed part of the slice filtration on kgl:

f?slicekgl := kgl← · · · ← fn−1
slice kgl← fnslicekgl← fn+1

slice kgl← · · ·

and the Bott tower/filtration

T? ⊗ kgl := kgl← · · · ← T⊗n−1 ⊗ kgl
id⊗n−1⊗β←−−−−−−− T⊗n ⊗ kgl

id⊗n⊗β←−−−−− T⊗n+1kgl← · · · .

In particular, taking associated gradeds, we also obtain a description of the slices of kgl as Tate
twists of the zero-th slice:

sjslicekgl ' T⊗j ⊗ s0
slicekgl j > 0.

Remark 1.2.2 (Multiplicative structures and the Bott tower). In a sense, the Bott filtration
is a much more elementary object than the slice tower: it exploits Bott periodicity for algebraic
K-theory and no other structural features of SH. However, producing a coherent multiplicative
structure on the Bott tower is challenging — at least the author does not know how to do this
without the slice tower.
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2. Motivic cohomology

Having discussed the slice filtration and KGL as a E∞-algebra we can now speak of motivic
cohomology as a multiplicative, graded object. By abstract nonsense, the functor

ω∞ : SH(X)→ ShvNis,A1(SmX)

admits a lax monoidal structure which induces a lax monoidal structure on filtered

ω∞ : SH(X)(Z,>)op → ShvNis,A1(SmX)(Z,>)op ,

and graded objects

ω∞ : SH(X)Z
δ,op

→ ShvNis,A1(SmX)Z
δ,op

.

Construction 2.0.1 (The motivic filtration on K-theory). Let k be a field. The motivic
filtration on K-theory is defined as the E∞-algebra in filtered sheaves:

Fil?motK := ω∞f?slicekgl ∈ CAlg(ShvNis,A1(SmX)(N,>)op).

Remark 2.0.2 (kgl versus KGL). For any smooth k-scheme Y, MS(Y) is 0-effective by defini-
tion. Therefore

ω∞kgl(Y) ' ω∞KGL(Y) ' K(Y).

Therefore, the effective version of KGL is enough is capture the K-theory of schemes and the
filtration above is N-indexed.

Construction 2.0.3 (Motivic cohomology). Let k be a field. We define a presheaf of N-indexed
graded E∞-algebras

Z(?) : Smop
k → grCAlg =: CAlg(N,>)op .

as the graded presheaves obtained by:

ω∞gr?sliceKGL(' ω∞(T⊗? ⊗ s0
slicekgl)) =: Z(?)[2?] ∈ CAlg(ShvNis,A1(SmX)Z

δ,op

).

The definition of motivic cohomology that we offer here is very abstract and so it is hard to
say that it has anything to do with algebraic geometry. For example, we saw that even though
higher K-groups are quite mysterious, we know that at the very least it has something to do
with vector bundles; what about for motivic cohomology? We will address these issues, but one
should appreciate that this definition, by virtue of being abstract, produces a very well-behaved
object, admitting a very canonical multiplicative structure and has a direct relationship with
algebraic K-theory.

Our immediate goals are to relate motivic cohomology to two invariants which we explained
are related to K-theory at the beginning of the story: the determinant and rank.

3. Z-linearity of motivic cohomology

We now prove the first nontrivial property of motivic cohomology: that it is not just a
presheaf of spectra, but rather a presheaf valued in D(Z), i.e., it admits a Z-linear structure.
To do this, we need to get a more concrete handle on algebraic K-theory.

3.1. Representability of K-theory. To do so we denote by

Grn := colim
m

Grn(Am) Gr∞ := colim
n

Grn.

Here, Grn(Am) is the Grassmanian variety of n-planes in Am-space. By convention, a point
T → Grn(Am) classifies a map of quasicoherent sheaves over T, U → O⊕mT such that O⊕mT /U
is locally free of rank m− n. The following is one of the key first results in motivic homotopy
theory.

Theorem 3.1.1 (Grassmanian models for K-theory). On any regular scheme S, the maps of
presheaves (of pointed spaces on SmS):

Z×Gr∞
i−→ Z× BGL∞

t−→ K>0.

are LZar,A1-equivalences.
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Proof. We prove this result in steps. Without loss of generality1, it suffices to evaluate the
above map of presheaves on R a local ring of a smooth S-scheme; actually we only need to
guarantee K0(R) = Z so that (

∐
n∈N BGLn)grp ' K>0(R).

First, the reader should be warned that Z×BGL∞ does not come equipped with an evident
monoid structure; even worse: it is not even a presheaf of H-spaces when one passes to the
homotopy category. Indeed, π1 of this presheaf of spaces is GL∞ which is evidently not an
abelian group, but π1 of any monoid must be abelian. Therefore, there is no chance that t is
an equivalence without something like LA1 .

We now use Theorem 3.1.3. Applying LA1 to the comparison map Z×BGL∞ → (
∐
n∈N BGLn)grp

and evaluating at R is given by the colimit of the map

Z× BGL∞(R[∆•])
α•−−→ (

∐
n

BGLn(R[∆•]))gp.

We claim that this colimit is an equivalence. Nikolaus’ refinement of the group completion
theorem [Nik17, Proposition 6] states that it is indeed an equivalence as soon as π1(colim∆op Z×
BGL∞(R[∆•]), x) is abelian at any base point. Since sifted colimits commute with products,
the connected components of the geometric realization is just Z and πn at any connected
component are all isomorphic via “translation” for any n > 1. Therefore, we need only prove
that π1(colim∆op BGL(R[∆•], ∗) is abelian. By general properties of sifted colimits2, we see
that

π1(colim
∆op

BGL(R[∆•], ∗) ∼= coeq(GL(R[t])⇒ GL(R)),

where the maps are given by setting t = 0 and t = 1. Whitehead’s theorem reviewed in
Theorem A.0.2 then let us conclude: since the commutator of GL(R) are given by the elementary
matrices, it suffices to observe that any elementary matrix can be homotoped to the identity.

Now, to prove that i is an equivalence. Just as in topology, we have the Stiefel scheme
of frames, Stn(Am) whose points T → Stn(Am) consists of pairs U → O⊕mT a point of the

Grassmanian and O⊕m−nT → O⊕mT → O⊕mT /U an epimorphism. We have the projection map
Stn(Am) → Grn(Am) which is evidently a GLm-torsor. This map is explicitly given by the
following quotients (taken in stacks, but the resulting objects are schemes because of freeness
of the actions):

Stn(Am) = [GLn+m/GLn]→ Grn(Am) = [GLn+m/GLn ×GLm].

Now, the key observation is that because any GLr-torsor which is étale locally trivial is also
Zariski locally trivial (by Hilbert theorem 90), the above map identifies with the following
Zariski sheaf quotients:

Stn(Am) = LZar(GLn+m/GLn)→ Grn(Am) = LZar(GLn+m/GLn ×GLm).

One then shows that St∞(Am) ' colimn Stn(Am) is A1-contractible (using the same arguments
as in topology) and thus it is a Zariski sheaf with free GLm-action whose quotient is Grn(Am).
This then gives us the Zariski-local identification between the infinite Grassmanian Grn and
BGLn.

�

We have used the following construction in the above proof.

Construction 3.1.2. Consider the following cosimplicial scheme

∆• : [n] 7→ ∆n := SpecZ[T0,T1, · · · ,Tn]/(

n∑
i=0

Ti = 1)(∼= AnZ).

1To be precise, we need to know two things: 1) that the presheaves involved are locally finitely pre-
sented/finitary and that 2) the Zariski site of any regular scheme is hypercomplete. The latter is not quite
true but it is true if such a scheme is finite dimensional but using 1) we may places ourselves in such a situation.
In fact this hypercompleteness assertion is true without regularity hypotheses [CM19].

2On the lowest homotopy group, it is calculated as a coequalizer.
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The point of writing AnZ in this manner is that it naturally acquires faces and degeneracies in
the obvious way. For example, for each fixed n > 1, looking at

V(Ti) ↪→ ∆n i = 0, · · · , n,

defines q+1 divisors, abstractly isomorphic to ∆n−1 ∼= An−1. We call an arbitrary intersections
of subschemes of this form (for any n > 1) the faces. For any scheme S, we set

∆•S := ∆• ×SpecZ S,

and we speak of the faces of ∆•S in the same manner.

The following result makes LA1 a special kind of localization.

Theorem 3.1.3. The endofunctor LA1 : PSh(SmS)→ PSh(SmS) identifies with the endofunctor

X 7→ colim
∆op

X(−×∆•)

Proof sketch. The key point is to observe that LA1X is A1-invariant. To see this we can write
down, for any ring R (in fact for any scheme), an explicit simplicial homotopy

h• : R[t][∆•]→ R[t][∆•+1]

between the identity map of R[t][∆•] and the map R[t][∆•]
t=0−−→ R[∆•]→ R[t][∆•]. The maps

hi is given by

hi : f 7→

{
σi(f) f ∈ R[∆n], σi is the degeneracy

t(Ti+1 + · · ·+ Tn+1) f = t,

and extended to a map out of R[∆•][t] by universal properties. Taking geometric realization of
X(R[∆•]) converts these simplicial homotopies to an equivalence of spaces. �

Since sifted colimits preserve products, we have the following:

Corollary 3.1.4. The endofunctor LA1 preserves products. In particular, it preserves presheaves
of commutative monoids.

3.2. Birational motives. To give s?kgl a Z-linear structure, we need only prove that s0kgl
admits a Z-linear structure. To do so, we consider the following map in the world of A1-invariant
Nisnevich sheaves on Smk

(3.2.1) K ' ω∞kgl→ ω∞s0kgl;

via Theorem 3.1.1 we have the projection map K→ LA1,Zar(Z×Gr∞)→ LA1,ZarZ ' RΓZar(−;Z);
this latter map is evidently multiplicative: it is simply the rank map. We now ask if there is a
multiplicative factorization of (3.2.1) through the latter projection. Somewhat surprisingly, it
will boil down to birational geometry, in particular the rationality of the grassmanians.

Definition 3.2.2. Consider the collection

Birk = {Σ∞(f+) : f : U ↪→ X is a dense open, X is irreducible} ⊂ ShvNis,A1(Smk)∆1

.

We have the localization endofunctor

Lbir : ShvNis,A1(Smk)∆1

→ ShvNis,A1(Smk)∆1

,

which formally inverts Birk. We say that a map f : E → F in ShvNis,A1(Smk) is a birational
equivalence if Lbirf is an equivalence.

Remark 3.2.3. The localization Lbir is a monoidal localization: this boils down to the fact
that f × id is birational whenever f is.

The following Lemma is easy given the relative purity theorem (which we will discuss next)



LECTURES 10-12 7

Lemma 3.2.4. Let k be a perfect field. For E ∈ SH(k), the spectrum ω∞s0E is Lbir-local. In

particular, if f : F → ω∞s0E is a morphism in ShvNis,A1(Smk)∆1

and F → G is a birational
equivalence, then there is a unique factorization of f through G. If F → G is a map of E∞-
algebras, then so is the factorization.

Lemma 3.2.4 is the prototype of what will happen next in this class: we will try to control
the slice filtration using birational geometry, bridged by motivic infinite loop space theory. The
way one should think about Lemma 3.2.4 is that ω∞s0E is a birational invariant; we will soon
explore the invariant nature of ω∞sjE for all E. First, we state the relative purity theorem of
Morel and Voevodsky.

Theorem 3.2.5 (Relative motivic purity). Let S be a base scheme and i : Z ↪→ X is a closed
immersion of smooth X-schemes. Then there is a canonical LZar,Nis-equivalence

V(Ni)
V(Ni)r0Z

' X
XrZ .

We will discuss Theorem 3.2.5 in the next class; take it for granted in these set of notes.

Proof of Lemma 3.2.4. The map f : F→ ω∞s0E is adjoint to a map σ∞F→ s0E. The functor
σ∞ preserves colimits, therefore if the following statement proves the claim: if U ↪→ X is an
open immersion where X is a smooth, connected scheme, then

cofib(Mk(U)→ Mk(X)) ∈ SHeff(k)(1).

For then,

Maps(Mk(U), s0E) ' Maps(Mk(X), s0E)

for all E.
Let Z ↪→ X be the complement of U. Since k is perfect we may stratify Z:

∅ ⊂ Zn ⊂ · · · ⊂ Z1 ⊂ Z0 = Z

such that Zk r Zk−1 is smooth. In this way, we may assume that U has a smooth complement
so that we may appeal to Theorem 3.2.5 and conclude that

cofib(Mk(U)→ Mk(X)) ' cofib(Mk(V(Ni) r 0Z)→ V(Ni)).

If Ni was trivial of rank c > 1, then the latter is equivalent to Tc ⊗Mk(Z) which is indeed in

SHeff(k)(> 1). We then use Zariski descent to reduce to this case.
�

We explain some easy structural properties of motivic cohomology.

Theorem 3.2.6. Let k be a perfect field. There is a multiplicative map of presheaves on Smk:

RΓZar(−;Z)→ Z(0)mot.

In particular, motivic cohomology promotes to a functor

Z(?) : Smop
k → grCAlg(D(Z)).

Proof. Theorem 3.1.1 implies that the rank map K>0 → RΓZar(−;Z) ' RΓNis(−;Z) is Lbir-local
because the infinite Grassmanian is a rational variety. Therefore, the map K>0 → ω∞s0

sliceKGL
factors through the rank map uniquely. The result then follows from Lemma 3.2.4. �

3.3. The unstable slice filtration. We now explain how to contextualize the theory of bira-
tional motives. The starting point is an “unstable” analog of the slice filtration:

Definition 3.3.1. Define

ShvNis,A1(Smk; Spt)(n) := T⊗n ⊗ ShvNis,A1(Smk; Spt) n > 0

so that we have subcategories

· · · ShvNis,A1(Smk; Spt)(n) ⊂ ShvNis,A1(Smk; Spt)(n−1) ⊂ · · · ⊂ ShvNis,A1(Smk; Spt)(0) = ShvNis,A1(Smk; Spt).
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By the same reasoning as in the case of SH(k) we have a lax symmetric monoidal functor

ShvNis,A1(Smk; Spt)→ ShvNis,A1(Smk; Spt)(Z,>)op ,

E ∈ ShvNis,A1(Smk; Spt) 7→ · · · → fnusliceE→ fn−1
usliceE · · · → f0

usliceE.

called the unstable slice filtration.

The unstable slice filtration is somewhat more concrete than its stable counterpart because
it admits a nice geometric interpretation. We begin by recalling the following easy definition of
codimension in algebraic geometry.

Definition 3.3.2. Let x ∈ X. Then

codimX(x) = dim(OX,x).

We will use the following often:

Lemma 3.3.3 (Codimension formula). Let f : X→ Y be a flat morphism of locally noetherian
schemes and x ∈ X then

codimX(x) = codimY(f(x)) + codmXf(x)(x).

The next definition refines the usual notion of a birational equivalence.

Definition 3.3.4 (n-birational equivalences). Let n > 0, then an open immersion U ↪→ X of
schemes is said to be a n-birational if for any x ∈ X with codimX(x) 6 n.

Via the usual formalism, we have the endofunctor of n-birational localization

Lnbir : ShvNis,A1(Smk; Spt)→ ShvNis,A1(Smk; Spt).

Using the relative purity theorem one can prove:

Proposition 3.3.5. Let k be perfect. The following subcategories of ShvNis,A1(Smk; Spt) are
equivalent:

(1) the subcategory of ShvNis,A1(Smk; Spt) generated under colimits and retracts by objects
of the form cofib(f) where Lnbir(f) is an equivalence.

(2) ShvNis,A1(Smk; Spt)(n).

Furthermore, for each E ∈ ShvNis,A1(Smk; Spt) we have a fibre sequence

fnusliceE→ E→ Ln−1
bir E n > 0.

4. Connectivity bound

We will work towards the following nontrivial connectivity bound which is necessary for our
approach to the Geisser-Levine theorem.

Theorem 4.0.1. Let k be a field. Then

FiljmotK|Smk
∈ ShvNis(Smk)>j .

Concretely: this means that for any X ∈ Smk we have the following vanishing bound:

πn(FiljmotK(X)) = 0 n 6 j − 1− dim(X).

This result is not at all clear because the slice filtration is a rather abstract construction.
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4.1. Reductions. To prove Theorem 4.0.1, we will have to prove a much more general state-
ment connectivity statement about motivic spectra and its slices. It is given as follows:

Theorem 4.1.1. Let k be a perfect field. Fix E ∈ SH(k) and q > 0. Suppose that for all p < q
we have that

πNis
p,qE ' 0,

then

πNis
<0,0f

q(E) ' 0.

The proof of Theorem 4.1.1 follows from a statement about A1-invariant Nisnevich sheaf
whose proof relies on a result of Morel’s and a conjecture about ω∞ and fq made by Voevodsky,
and later proved by Levine. The former is the following statement.

Lemma 4.1.2 (Connectivity criterion for unstable j-effectives). Let k be a perfect field. Let

E ∈ ShvNis,A1(Smk)(j). If πNis
<0 ΩjGmE ' 0, then πNis

<0 E ' 0.

The key result which underlies Lemma 4.1.2 is the following theorem due to Morel.

Theorem 4.1.3 (Morel’s connectivity theorem). Let k be a perfect field and let E be an A1-
invariant Nisnevich sheaf on Smk. Then the following are equivalent:

(1) E is Nisnevich-locally j-connective;
(2) πn(E(L)) = 0 for all n 6 j − 1 and L a finitely generated field extension of k.

Theorem 4.1.3 falls within the tradition of Gersten’s conjecture within algebraic K-theory.
The underlying philosophy is that A1-invariance and Nisnevich descent is enough to guarantee
that E is controlled by its values on fields. The next result sounds somewhat technical, but is
rather deep conjecture of Voevodsky’s.

Theorem 4.1.4 (Levine). For a perfect field k, The following diagram commutes

SH(k) ShvA1(Smk; Spt)

SH(k) ShvA1(Smk; Spt).

ω∞

s0 s0u

ω∞

Theorem 4.1.4 asserts that taking slices commutes with taking “Gm-infinite loop spaces.”
We will motivate this statement and give its proof in a later lecture. Assuming Theorem 4.1.4
and Lemma 4.1.2 we proceed as follows:

Proof of Theorem 4.1.1. Our goal is to prove that the A1-invariant Nisnevich sheaf ω∞fqE
is connective in the Nisnevich t-structure. By Theorem 4.1.4 we deduce that ω∞fqE ∈
ShvNis,A1(Smk)(q). Hence, by Lemma 4.1.2, to prove that it is connective in the Nisnevich
t-structure it suffices to prove this after applying ΩqGm to ω∞fqE. Let L be a finitely generated
field extension L over k. Then, by adjunction,

πNis
n (ΩqGmω

∞fqE)(L) ' πn(MapsSH(k)(G⊗qm [n], fq(E)) ' πn(MapsSH(k)(G⊗qm [n],E),

which is zero by the assumption on E. Via Morel’s Theorem 4.1.3, we conclude that ΩqGmω
∞fqE

is indeed connective. �

Proof of Theorem 4.0.1. Apply Theorem 4.1.4 to E = KGL[−q] by noting that

πNis
p,qKGL = πp−2qK,

which is zero when p− 2q < 0 because all schemes in sight are regular. �
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Appendix A. Some linear algebra

We have indicated the origins of K2, now we explain K1. The group GL(R) is the group of
matrices with 1’s on the diagonal but where there are only finitely many non-zero entries. Here
is the definition of K1:

Definition A.0.1. [Bass-Schaunel] Let R be an associative, unital ring. Then K1(R) :=
GL(R)/[GL(R),GL(R)].

To get a better handle on the commutator subgroup, we recall that the elementary matrix
eij(x) where x ∈ R is the matrix in GL(R) where the only nontrivial spot away from the diagonal
is ij where the entry is x. We set E(R) ⊂ GL(R) the subgroup generated by elementary matrices.
Intuitively, E(R) is the subset of GL(R) of those matrices which may be reduced to the identity
matrix using only row operations.

Lemma A.0.2 (Whitehead’s Lemma). Let R be an associative, unital ring. Then

E(R) = [GL(R),GL(R)]

Proof. For E(R) ⊂ [GL(R),GL(R)] one can calculate

eij(x) = [eik(x), ekj(1)].

Now, Whitehead observed that one can write

[g, h] =

[
g 0
0 g−1

] [
h 0
0 h−1

] [
(hg)−1 −1

0 hg

]
.

Note that each the terms in the product are indeed in E(R). �
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