
LECTURES 4-6

ELDEN ELMANTO

All schemes that appear in these lectures are quasicompact and quasiseparated.

1. Milnor K-theory

We might as well start in degree two. The purpose of what follows is not to give a full proof
of quadratic reciprocity but, rather, to familiarize ourselves with some calculations in Milnor
K-theory. Let a ∈ Z. Suppose we are interested in the solution of the equation

fa(n) = n2 − a.
Number theorists and, arguably, homotopy theorists would approach this by asking for solutions
modulo primes p for every prime. We say that a is a quadratic residue modulo p if fa(n)
has a mod-p solution. The law of quadratic reciprocity finds a certain interesting pattern
between the solutions of fq(n) modulo p and the solutions of fp(n) modulo q whenever q is a
prime. Here is a sample:

Example 1.0.1. Let q = 5 and p = 11. Then

42 = 16 ≡ 5 mod 11.

Hence 5 is a quadratic residue modulo 11. On the other hand,

1 = 12 ≡ 11 mod 5,

so that 11 is a quadratic residue modulo 5. From this, one might guess that p is a quadratic
residue modulo q if and only if q is a quadratic residue modulo p. For another example consider
q = 3 and p = 7. Then, modulo 7 we have:

12 ≡ 1 22 ≡ 4 33 ≡ 2 42 ≡ 2 52 ≡ 4 62 ≡ 1.

So, from checking all of this, we see 3 is not a quadratic residue modulo 7. On the other hand,

7 ≡ 1 = 12 mod 3,

so that 7 is a quadratic residue modulo 3. Hence the naive guess is not quite right.
Checking bigger primes get more and more unwieldy. For example, we can see what happens

a = 5 and p = 13. The only possible residues modulo 5 are

12 ≡ 1 22 ≡ 4 mod 5.

Since 13 ≡ 3 mod 5, it cannot be a residue modulo 5. On the other hand, one can also show
that the solutions to f5(n) = n2 − 5 is not divisible by 13. We will explain a method to do this
soon.

To proceed, we define the Legendre symbol; let p > 3 be an odd prime and a ∈ Z:

(a/p)L =


1 p does not divided a and a is a quadratic residue modulo p

−1 p does not divided a and a is not a quadratic residue modulo p

0 p divides a.

There is actually a nicer expression for the Legendre symbol, which will feature later and is
due to Euler.

Lemma 1.0.2 (Euler). Let p > 3 be an odd prime and a ∈ Z. Then

(a/p)L ≡ a
p−1

2 mod p.
1
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The big theorem that one has in this subject is:

Theorem 1.0.3 (Quadratic reciprocity). Let p, q > 3 be odd primes. Then

(p/q)L · (q/p)L = (−1)
p−1

2 ·
q−1

2 .

Example 1.0.4. By quadratic reciprocity:

(5/13)L · (13/5)L = (−1)
5−1

2 ·
13−1

2 = (−1)2·6 = 1.

Hence (13/5)L = −1. On the other hand,

(3/7)L · (7/3)L = (−1)1·3 = −1.

Hence, since (7/3)L = 1, we see that (3/7)L = −1. Actually one can restate quadratic reciprocity
in the following manner:

(p/q)L = ε(q/p)L

where

ε =

{
1 p or q is congruent to 1 modulo 4

−1 both p and q are congruent to 3 modulo 4.

There are many proofs of quadratic reciprocity. One of them, due to Tate who attributes it
to Gauss, deduces it from the following isomorphism of K-groups [Mil71, Theorem 11.6]:

Theorem 1.0.5 (Tate). There is a canonical isomorphism:

KM
2 (Q)

∼=−→ Z/2⊕
⊕
p>3

F×p .

I want to explain what KM
2 is and what the maps are as some basic examples of motivic

objects.

1.1. Milnor K-theory and symbols. Milnor K-groups will feature heavily throughout this
course; however it does seem rather mysterious why they are relevant at all. The goal of this
section is to give a geometric interpretation of these symbols and explain their “motivic” nature.

Definition 1.1.1 (Symbol). Let A be a ring and let A× ⊂ A the group of invertible elements
of A. A symbol, valued in an abelian group M is a map

{−,−} : A× ×A× → M

such that

(1) {aa′, b} = {a, b}+ {a′, b};
(2) {a, bb′} = {a, b}+ {a, b′};
(3) {a, 1− a} = 0 if a, 1− a ∈ A×.

We call (3) the Steinberg relations. Sometimes, for clarity, these are called Steinberg
symbols.

Remark 1.1.2. Most textbooks define symbols only for A = F a field. The definition of symbols
and Milnor K-groups are not quite correct whenever A is an arbitrary ring, but sometimes it
is. Perhaps it is best to call them “naive” symbols.

We begin with some examples of symbols.

Example 1.1.3 (The Hilbert symbol at infinity). Consider

c∞ : R× × R× → {±1}
given by

c∞(x, y) =

{
−1 x, y < 0

+1 else.

Now, c∞(x, 1− x) = 1 must be true because x and 1− x cannot be negative at the same time.
This is the easiest example of a symbol.
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Example 1.1.4 (The tame symbol). Let F be a discrete valuation field, with value group ν
and κ the residue field. The tame symbol is given by

F× × F×
∂v−→ κ×

given by

∂v(a, b) = (−1)ν(a)ν(b)
(
bν(a)

aν(b)

)
Let’s provide a quick proof that the tame symbol satisfies the Steinberg relations. Let R be

the valuation ring of F. We can write

a = a1π
νa b = b1π

νb a1, b1 ∈ R×, νa, νb ∈ Z.

Let a+ b = 1 and our goal is to prove that ∂v(a, b) = 0 mod m.
If νa > 0, then a ∈ m. Since b = 1− a, it must then be a unit in R so that νb = 0. We then

calculate

∂v(a, b) = (−1)0
(
bν(a)

aν(b)

)
= bν(a) = b

νa
= (1− a)νa ≡ 1 mod m.

Evidently, if νb > 0, the same argument works. If νa = νb = 0, then we have taken zero powers
of a and b and so we get 1.

Now, assume that νa < 0, so that a−1 ∈ m. We calculate

b
a = 1−a

a = −1 + a−1 ≡ −1 mod m.

Having νa < 0 also means that ν(1 − a) = min{ν(−1) = 0, ν(a)} = ν(a) and thus the term(
bν(a)

aν(b)

)
evaluates as

b
a

ν(a)
= (−1)νa ,

and the sign in front of the tame symbol is given by (−1)ν(1−a)ν(a) = (−1)ν(a) and thus

∂v(a, b) = (−1)ν(a)(−1)ν(a) ≡ 1 mod m

as desired. The same argument also works for νb < 0.

As suggested by the notation, the tame symbol is a kind of a boundary map for K-groups.
We will use this later.

Example 1.1.5 (The differential symbol). The following is the most important character in
this whole story, or at least this class. Let R be a ring; we denote by ΩnR :=

∧n
Z Ω1

R/Z, the n-th

wedge powers of absolute differential forms; I remark that this is not necessarily a good thing
to look at for a arbitrary R. For f ∈ R× we write

dlog(f) := df
f ∈ Ω1

R/Z.

The differential symbol is given by

R× × R× → Ω2
F (f, g) 7→ dlog(f) ∧ dlog(g).

We verify that

dlog(f) ∧ dlog(1− f) = 1
f ·1−f df ∧ d(1− f)

= − 1
f ·1−f df ∧ df

= 0.

Example 1.1.6 (The Galois symbol). Let 1
n ∈ F where F is a field. Then the Kummer sequence

on Rét yields a boundary map on étale cohomology

F×
δ−→ H1

ét(F;µn).

The Galois symbol is a map

F× × F× → H2
ét(F;µ⊗2

n ) (f, g) 7→ δ(f) ∪ δ(g).
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The verification of the Steinberg relation is due to Tate; one can refer to [Wei13, Proposition
III.6.10.3]. For K-theory with coefficients away invertible in the base field, this is perhaps the
most important symbol.

We can now write down the universal receptacle for symbols:

Definition 1.1.7. The symbolic K2-group or (naive) Milnor K2-group of A is defined to
be the

KM
2 (A) := A× ⊗Z A×/(a⊗ 1− a, a 6= 0, 1).

The equivalence class of the pure tensor x ⊗ y will be denoted by {x, y} ∈ KM
2 (A). In

general, a typical elemeent of KM
2 (A) is a finite linear combination of terms that look like

{x1, y1}+ · · ·+ {xn, yn}. Here are a couple more relations in Milnor K-theory which are useful.
In fact they are expected for a good theory of “symbolic K-groups”; see [Ker09, Lemma 2.2].

Lemma 1.1.8. Let B be the localization of a local ring A such that A has infinite residue fields.
Then in KM

2 (B) the following hold:

(1) {x,−x} = 0;
(2) we have skew symmetry: {x, y} = −{y, x}; in particular {x, x} = 0.

We remark that the above hypotheses include the case that A itself is a field.

Proof. We claim that the second relation follows from the first. We expand, via bilinearity,

{xy,−xy} = {x,−x}+ {x, y}+ {y, x}+ {y,−y}.
Therefore, if we assumed (1), we get that {x, y}+ {y, x} = 0 and hence the result is proved.

We now prove the first relation. We begin by establishing these relations for elements in the
image of the induced map A → B. First, notice that bilinearity easily implies that −{x, y} =
{x−1, y}. If x ∈ A× such that 1− x is also a unit, then we can write

(1.1.9) − x = 1−x
1− 1

x

.

Therefore, we see that 1− 1
x is in A× and that:

{x,−x} = {x, 1−x
1− 1

x

} = {x, 1− x} − {x, 1− 1
x} = 0 + { 1

x , 1−
1
x} = 0.

This finishes the proof whenever A is a field. If A is not a field, we have to contend with the
case that 1− x 6∈ A×.

Let s ∈ A× such that s 6= 1, which is exactly saying that 1 − s ∈ A×. Then, observe that
1− xs is also in A× and we have:

0 = {xs,−xs} = {x,−x}+ {s,−s}+ {x, s}+ {s, x} = {x,−x}+ {x, s}+ {s, x},
where we have used that {xs,−xs} = {s, s} = 0 from the previous case. Therefore:

(1.1.10) {x,−x} = −{x, s} − {s, x}.
Choosing elements s1, s2 such that s1, s2, s1s2 6= 1 (we can do this because of the assumption
on residue fields) we have, by the previous (1.1.10) on s1s2

{x,−x} = −{x, s1s2} − {s1s2, x} = −{x, s1} − {x, s2} − {s1, x} − {s2, x}.
Using again (1.1.10) on s1 and s2 we conclude that the above is equal to 2{x,−x} and hence
{x,−x} = 0.

Next, assume that x ∈ m but becomes invertible in B. Then 1 − x ∈ A×. Furthermore,
by (1.1.9), 1− x−1 is in B× and that

{x,−x} = {x, 1−x
1− 1

x

} = {x, 1− x} − {x, 1− 1
x} = 0 + { 1

x , 1−
1
x} = 0.

Lastly, we prove the general case. Let x = a/b where a, b ∈ A and a, b ∈ B×. Then

{a/b,−a/b} = {a,−a}+ {b, b} − {b,−a} − {a, b}.
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The term {a,−a} is zero by what we have already proved. On the other hand,

{b, b} = {b, (−1)(−b)} = {b,−1}+ {b,−b} = {b,−1}

since {b,−b} = 0 by what we have already proved. Furthermore we have also already proved
skew symmetry for terms which are not fractional hence

{a, b} = −{b, a}

Therefore

{a/b,−a/b} = {b,−1} − {b,−a} − {a, b} = {b,−1} − {b,−a}+ {b, a},

which, by bilinearity, works out as

{b,−1 · (−a)−1}+ {b, a} = {b, a−1}+ {b, a} = 0

�

Remark 1.1.11 (Naive versus improved Milnor K-theory). In the proof of Lemma 1.1.8, it is
important that we can choose certain units in the residue field and hence, we are restricted to
the range that they are large enough to make these choices. This is one of the many reasons
why the definition of Milnor K-theory is not quite correct. Gabber and Kerz have proposed
“improved” Milnor K-theory which is the correct verson of this theory for semilocal rings.

In this manner, we can easily calculate K2 of finite fields and prove that there is no nontrivial
symbols over finite fields.

Lemma 1.1.12. KM
2 (Fq) = 0.

Proof. Recall that F×q is cyclic and let v be a generator. By Lemma 1.1.8, {v, v} = 0. But any

element in KM
2 (Fq) is a linear combination of elements of the form {vi, vj} = ij{v, v} = 0.

�

Let us now sketch how Theorem 1.0.5 works and how it is related to quadratic reciprocity.
Whatever K-theory is, Quillen has proved a localization sequence on the level of spectra⊕

K(Fp)
i∗−→ K(Z)

j∗−→ K(Q).

We remark that the second map comes from the pullback functoriality of K-theory and the first
comes from the pushforward functoriality of K-theory. Hence we have a long exact sequence
[Wei13, VI.(6.6)]

· · · →
⊕

K2(Fp)→ K2(Z)→ K2(Q)
∂−→
⊕

K1(Fp) = F×p → K1(Z) · · · .

We have seen that K2(Fp) = 0. Another check shows that the map labeled from
⊕

K1(Fp) →
K1(Z) is actually zero [Wei13, Application 6.5.1]. Hence we have a short exact sequence [Wei13,
Theorem III.6.5]

(1.1.13) 0→ K2(Z)→ K2(Q)
∂−→
⊕

K1(Fp) = F×p → 0.

Milnor has computed K2(Z) = {±1} [Mil71, Chapter 9] and, we can split the map K2(Z) →
K2(Q) using the Hilbert symbol at infinity, Example 1.1.3. Therefore we have an isomorphism
implemented by the map:

K2(Q)
(c∞,∂3,∂5,··· )−−−−−−−−−→ {±1} ⊕

⊕
p>3

F×p .

To prove quadratic reciprocity, we apply this isomorphism and a modified version of the even
tame symbol.
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Example 1.1.14 (Modified even tame symbol). Any nonzero rational number can be written
as a product

r = ±2j5ku k = 0, 1 u = m/n,m ≡ 1 mod 8.

Then write
x = (−1)ix2jx5kxu y = (−1)iy2jy5kyu′.

and set
∂′2(x, y) = (−1)ixiy+jxky+kxjy .

This is a Steinberg symbol.

Reformulating Milnor’s calculation, we learn that for any other symbol c on Q taking values
in M, we must have maps ϕp : F×p → M for p > 3 and ϕZ : {±1} → M such that

c(x, y) = ϕZ((x, y)) ·
∏
p>3

ϕp(∂p(x, y)) ∈ M

Let M = {±1}. The modified tame symbol is not accounted for in the classification of symbols
over Q. Hence we have must a “product formula”:

(1.1.15) ∂′2(x, y) = ϕZ((x, y)∞) ·
∏
p>3

ϕp(∂p(x, y)).

One then needs to prove that Legendre symbols do indeed belong this universe.

Lemma 1.1.16. We have: ϕZ = id and ϕp(∂p(x, y)) = ∂p(x, y)
p−1

2 mod p.

Therefore, we conclude the following refinement of (1.1.15):

(1.1.17) ∂′2(x, y) = (x, y)∞ · (∂p(x, y))
p−1

2 ∈ {±1}.

Remark 1.1.18 (Weil Reciprocity). There is another reciprocity law which is the function field
analog of quadratic reciprocity. Let F be a field and p be a maximal ideal of F[t]. This should
be thought of as a closed point of A1

F and thus defines a discrete valuation on F(t). Therefore,
for each such p, we have a tame symbol

∂p : KM
2 (F(t))→ (F[t]/p)×.

There is also the discrete valuation at infinity on F(t) such that for a polynomial f ∈ F[t] we
have that ν∞(f) = −deg(f). We also get a tame symbol at ∞:

∂∞ : KM
2 (F(t))→ F×.

Weil proved

(f, g)∞ ·
∏
p

Nκ(p)/F(∂p{f, g}) = 1 ∈ F×

Here, Nκ(p)/F : (F[t]/p)× → F× is the field norm. This equation should be thought of as
the analog of the “product formula” of (1.1.17) and is a consequence of the following analog
of (1.1.13):

0→ K2(F)→ K2(F(t))→
⊕

p∈|A1
F|

(F[t]/p)× → 0.

There is a very concrete interpretation of Weil reciprocity that is very much analogous to
quadratic reciprocity. Assume that F is algebraically closed (so that we do not need to invoke
field norms). Let f, g be rational functions on P1 such that the supports of div(f) and div(g)
are disjoint. That is to say, any factor with nonzero coefficient in div(f) must be zero in div(g)
and vice versa. Therefore we can calculate the tame symbol for any valuation determined by
x ∈ |P1

F| as

∂νx{f, g} =


g(x)ν(f) x is a support of div(f)

f(x)−ν(g) x is a support of div(g)

1 else.
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Plugging this into Weil reciprocity we get∏
x∈supp(div(f))

g(x)ν(f) =
∏

x∈supp(div(g))

f(x)ν(g) ∈ F×.

This is the formula

g(div(f)) = f(div(g))

which is the nicest way to state this result.

1.2. The motivic Steinberg relations. We want to give a geometric explanation for the
Steinberg relations. This will be an important step in naming enough interesting elements
in motivic cohomology to run the proof of the Geisser-Levine theorem. It also gives a nice
introduction to the “rules” of A1-homotopy theory. To proceed, we work over a base scheme S;
we have the category SchS? of pointed S-schemes: these are just S-schemes X equipped with a
section of the structure map s : S→ X. We have the subcategory

SmS+ ⊂ SchS?

of those pointed S-schemes which are of the form X+ := X t S where X is a smooth S-scheme.
There is a symmetric monoidal structure on SmS+ given by the smash product:

X+ ∧Y+ := (X×Y)+.

The nonabelian derived category on SmS+ is calculated as the∞-category of pointed presheaves:

PShΣ(SmS+) ' PShΣ(SmS)?.

Via the general formalism of Day convolution, PShΣ(SmS)? acquires a symmetric monoidal
structure, which we also denote by ∧ such that the Yoneda functor

h : SmS+ → PShΣ(SmS)?

is symmetric monoidal and preserves sifted colimits in each variable.

Remark 1.2.1 (Calculating quotients). There is one tricky aspect of PShΣ(SchS)? which will
appear in some arguments later. Let W ⊂ Y be an immersion of schemes, the quotient Y/W ∈
PShΣ(SchS)? is not calculated pointwise because taking the cofibre of the map W+ → Y+ in
presheaves will not give a Σ-presheaf. We need to remember that PShΣ(SchS)? is the free ∞-
category generated under sifted colimits by representables. The quotient is calculated as the
pointwise geometric realization of the following diagram of presheaves of sets:

Y+ (Y tW)+ (Y tW tW)+ · · · .

There are several objects of interest in PShΣ(SmS)?. We have the presheaf of pointed Gm:

this is given by the cofibre of the map h(S+)
1−→ h(Gm+). We simply denoted this object by Gm.

An important object in the A1-invariant theory of motives are the interated smash products of
Gm, denoted by G∧nm . Note that all these constructions are performed in a presheaf category
and are therefore easy to calculate and describe.

So far, we have not performed any type of localization on the basic category PShΣ(SmS)?.
A persistent theme in the subject is that localizations can be very hard to calculate, but also
contain a very rich amount of information. Here is the first kind of localization that one
encounters:

Definition 1.2.2. Let X ∈ SchS, then consider U,V ⊂ X opens such that U ∪V = X. We can
form the following square in presheaves

U ∩V U

V X;
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which induces the cocartesian gap U tU∩V V→ X. The endofunctor

LZar : PSh(SchS)→ PSh(SchS)

is given by localization at the maps U tU∩V V→ X for all X,U,V as above.

It is clear that we can consider variants of the localization above in the∞-category of pointed
presheaves or restrictions of SchS, such as to SmS; in particular the pointed version localizes at
maps

U tU∩V V+ → X+.

The other localization that we will study is A1-localization: this simply localization at the
projection maps A1

X → X for all X ∈ SchS. If LT is a localization, we will say that a map
f : X → Y is an T-equivalence if it LT(f) is an equivalence; hence there is an appropriate
notion for maps to be T-contractible, T-homotopic and so on.

Theorem 1.2.3 (The motivic Steinberg relation). Let S be a scheme and consider the map in
PShΣ(SmS+):

(A1 r {0, 1})+
st−→ G∧2

m a 7→ (x, 1− x)

(note that this map sends + to the base point (1, 1) in Gm ∧Gm. Then, this map is contractible
after applying LZar,A1Σ.

As a corollary, suppose that a ∈ O(S) such that x and 1− x are both invertible. Then such
a datum is classified by a map of S-schemes S → A1 r {0, 1}S; which gives rise to a map in
PShΣ(SmX+)

S1 ' Σ(S+)
a−→ Σ((A1 r {0, 1})+).

The further compositon to G∧2
m is then contractible after applying LZar,A1 , leading to the Stein-

berg relation in the homotopy group

[S1,LZar,A1(G∧2
m )]PShΣ(SmS)? .

The following argument is due to Marc Hoyois.

Proof. Recall that the smash product is given by the cofibre sequence

Gm ∨Gm → Gm ×Gm → Gm ∧Gm.

Ideally, meaning if we want to prove the claim without 1-suspension, we want to factor the map

A1 r {0, 1} x 7→(x,1−x)−−−−−−−→ Gm ×Gm,

through the monomorphism Gm ∨ Gm. This is not possible, but gives us a hint about how
to proceed. The basic idea is to thicken the map Gm × Gm → Gm ∧ Gm after 1-suspension
and show that the pointed map A1 r {0, 1}+ → (Gm × Gm)+ → Gm ∧ Gm factors through a
contractible piece of the thickening.

We set

B := Bl(0,1),(1,0)(A2) r {(A1 × 0) ∪ (0× A1)},
where the pieces removed are the strict transforms of the affine line. This is a thickening of the
Gm ×Gm where on the point (0, 1), we have a stuck in a copy of P1 r 0 and similarly over the
point (1, 0). More precisely, setting

U := Bl(0,1)(A1 ×Gm) r (0×Gm) V := Bl(1,0)(Gm × A1) r (Gm × 0);

we have an open cover of B such that U∩V = Gm×Gm. Consider C to be the closed subscheme
of B given by the union of 3 affine lines: the line connecting (1, 1) to (0, 1), the exceptional
divisor at (0, 1) and the line joining (0, 1) to (1, 0). The latter is A1-contractible. Hence, we
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have a commutative diagram in pointed presheaves (chasing the base point through to the point
(1, 1)):

(1.2.4)

A1 r {0, 1}+ Gm ×Gm

C 'A1 ∗ LZar(U tGm×Gm V) ' B.

To finish the proof, we claim that the right vertical map identifies with the canonical collapse
map Gm ×Gm → Gm ∧Gm after ΣLA1 .

To do so, note that we have an LA1 -equivalence

(A1 × 1) tGm×1 (Gm ×Gm) t1×Gm (1× A1) ' Gm ∧Gm;

one sees this by noting that (A1 × 1) tGm×1 (Gm × Gm) is a LA1-equivalent to coning off
Gm × 1 ⊂ (Gm ×Gm). Now we claim that there is an ΣLA1-equivalence

(A1 × 1) tGm×1 (Gm ×Gm) t1×Gm (1× A1) ' U tGm×Gm V.

We do this by producing ΣLA1-equivalences

e : (A1 × 1) tGm×1 (Gm ×Gm)→ U e′ : (Gm ×Gm) t1×Gm (1× A1)→ V,

and then gluing them.
Consider the following diagram

(A1 × 1) tGm×1 (Gm ×Gm) U

(A1 × 1) tGm×1 (Gm × A1) Bl(0,1)(A2) r (0× A1).

e

We claim that the bottom row is LA1 -homotopic to a map between A1-contractible spaces. If
this were the case, then extending vertically by taking cofibres and LA1 we get

(A1 × 1) tGm×1 (Gm ×Gm) U

∗ ∗

Gm×A1

Gm×Gm
Bl(0,1)(A2)r(0×A1)

U .

e

Σe

But it is easy to see that the bottom map is an equivalence of pointed presheaves and thus ΣLA1e
is an equivalence. Note first that, by inspection, (A1×1)tGm×1(Gm×A1) ∼= Bl(0,1)(A2)r(0×A1).

Hence it suffices to prove that (A1 × 1) tGm×1 (Gm × A1) is A1-contractible, we note that
Gm × 1 → A1 × 1 is an LA1 -equivalence, hence the map A1 × 1 → (A1 × 1) tGm×1 (Gm × A1)
is an LA1-equivalence and the domain is A1-contractible. The same argument applies to e′ :
(1 × A1) t1×Gm (Gm × Gm) → V. Therefore, we see that, suspending (1.2.4) we obtain a
LA1,Zar-commutative diagram:

Σ(A1 r {0, 1})+ Σ(Gm ×Gm)

∗ ΣB ' Σ(Gm ∧Gm).

�

Theorem 1.2.3 hints at the naturality of Milnor K-theory — its seemingly ad hoc definition
has a geometric explanation within the context of A1-homotopy theory. In the next section, we
will elaborate on the category of A1-invariant motivic spectra over a base.
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2. The formalism of A1-invariant motivic spectra

The Steinberg relation is one of the many reasons why A1-localization is a good idea. We
have also seen that A1-localization should be coupled with Zariski localization. For the purposes
of building a good theory, it turns out that one should use a topology which is finer than the
Zariski topology called the Nisnevich topology. We now explain what we mean by an A1-
invariant cohomology theory in algebraic geometry.

Definition 2.0.1. Let S be a scheme.

(1) a Nisnevich square is a pullback square of S-schemes

U×X V V

U X.

p

j

where p is étale, j is open and p induces an isomorphism p : p−1((X r U)red) →
(X r U)red;

(2) an affine Nisnevich square is a pullback square of affine S-schemes

Spec B[ 1
f ] Spec B

Spec A[ 1
f ] Spec A,

p

j

where p is étale, f ∈ A and there is an induced isomorphsim B/f ∼= A/f .
(3) A functor: E : Smop

B → Spt is said to be an A1-invariant if the projection map

X× A1 → X induces an equivalence E(X)
'−→ E(X× A1).

(4) For a presheaf E, set

ΩP1E(X) := fib(E(X× P1)
∞∗−−→ E(X));

which defines a functor ΩP1E : Smop
B → Spt. Since ∞∗ is split by P1 ×X→ X, we have

a direct sum decomposition

E(X× P1) ' E(X)⊕ ΩP1E(X).

(5) Let {E(•)} be a Z-graded collection of presheaves of spectra, then a P1-prespectrum
is a the data of maps:

E(j)→ ΩP1E(j + 1).

(6) An A1-invariant motivic cohomology theory is the data of a P1-prespectrum
{E(•)} such that:
(a) E(j) is an A1-invariant Nisnevich sheaf;
(b) each P1-bundle datum is an equivalence.

As defined, the category of A1-invariant motivic cohomology theory is rather unwiedly; for
example it is not quite clear that one can endow it with a symmetric monoidal structure.
Nonetheless, we go ahead and denote this category by SH(S), this is the stable ∞-category of
a A1-invariant motivic spectra. We give examples in the next lectures.
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