
LECTURES 7-9

ELDEN ELMANTO

We take the convention that Gm is the scheme A1 r 0 pointed at 1. This can also be
interpreted in the world of pointed (Σ−)presheaves. We will also denote by CAlg♥ ⊂ CAlg the
inclusion of (discrete) commutative rings into E∞-rings.

1. Motivic spectra: examples and universal properties

In the previous set of lectures, we defined what it means to define an A1-invariant motivic
cohomology theory over a base scheme S. We have alluded that they assemble into a category
called SH(S). We start this lecture by explaining a “minimalist” approach to such cohomology
theories and explain some other fundamental relations in the world of A1-invariant motivic
homotopy theory.

1.1. The minimalist approach. Sometimes, we want to only contemplate cohomology theo-
ries defined on affine schemes. Let R be a fixed commutative ring which we think of as a “base.”
To begin with, recall the following definition due to Bass.

Definition 1.1.1 (Contraction). Let C be a pointed ∞-category:

X : SmCAlgR → C.

Its contraction, is the presheaf defined as

X−1(S) := fib(X(S[t, t−1])
t=1−−→ X(S));

note that we have a canonical splitting (induced by the map S→ S[t, t−1])

X(S[t, t−1]) ' X−1(S)⊕X(S).

Remark 1.1.2. If C is a closed symmetric monoidal, pointed ∞-category (like the ∞-category
of pointed spaces or the 1-category of pointed sets), then the contraction is given by as the
internal mapping object in presheaves.

ΩGm
X := map(Gm,X) ' X−1 ∈ PSh(SmCAlgop

R ;C);

here, as per convention, Gm is the representable presheaf pointed at 1. There is something
which is subtle and important about contractions: suppose that τ is a topology on C. Then the
∞-category of sheaves is stable under taking fibres, hence (LτX)−1 is τ -sheaf. We then have a
comparison map

Lτ (X−1)→ (LτX)−1.

It is not obvious that this map is an equivalence. This type of issues will be addressed later in
the course.

Example 1.1.3 (Weight shifting). To preview what will happen, let us compute examples of
contractions. Assume that R is a domain, then as abelian groups:

O(R[t, t−1])× ∼= O(R)× ⊕ {tn : n ∈ Z}.
Hence, thinking of O× as a presheaf of abelian groups on smooth R-algebras, we see that
O×−1

∼= Z. We can also calculate the same example for Picard group. For a smooth k-algebra R
where k is a field (but holds in somewhat greater generality) we have

Z 17→[Spec R×0]−−−−−−−−−→ Pic(R[t])
j∗−→ Pic(R[t, t−1])→ 0.

1
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The composite of the first map along with the map Pic(R[t])
t=1−−→ Pic(R) is zero, but the latter

map is an isomorphism by the A1-invariance of Picard groups in this setting. Hence we conclude
that

Pic−1 ' 0

as a presheaf on smooth schemes over a fixed field.

Definition 1.1.4. A minimalist A1-invariant motivic cohomology theory is the data of

(1) a collection of presheaves

X(j) : SmCAlgR → Spt j ∈ Z;

(2) bonding maps
εj : X(j)[j]→ (X(j + 1)[j + 1])−1

such that:

(1) each X(j) converts an affine Nisnevich square to a bicartesian diagram;
(2) each X(j) is a A1-invariant;
(3) the maps εj are equivalences.

Each A1-invariant motivic cohomology theory determines a minimalist one and vice versa1.
We will not make this too precise, but the procedure is given by right Kan extension plus the
following two results:

Proposition 1.1.5. Consider the zig-zag in PShΣ(SmS)∗:

Σ(Gm/1)
α←− (A1

+)/A1 r 0+
β−→ P1

+/P1 r 0+
γ←− P1/∞.

Then: α is an LA1-equivalence, β is a LZar-equivalence and γ is an LA1-equivalence.

Proof. The map α is induced by

A1 r 0+ A1
+ (A1

+)/A1 r 0+

Gm ∗ Σ(Gm/1).

α

The left square is an LA1 -cocartesian square whence α is an equivalence. For the second square
we have the standard Zariski cover of P1:

A1 r 0+ A1
+ (A1

+)/A1 r 0+

P1 r 0+ P1
+ P1

+/P1 r 0+.

β

Here, the left square is LZar-cocartesian and hence β is an equivalence. Lastly, the inclusion
{∞} ↪→ P1 r 0 is an LA1-equivalence which explains the LA1 -equivalence of γ. �

Proposition 1.1.5 is often stated as the LZar,A1 -equivalence

Σ(Gm/1) 'Zar,A1 P1/∞.
It implies that for any A1-invariant Nisnevich (in fact, Zariski) sheaf of spectra, E, we have an
equivalence

E(P1
X) ' E(Gm,X)[−1],

which lets us freely translate between bonding maps involving P1
X and bonding maps involving

contractions.
To translate between the affine Nisnevich and the Nisnevich topologies, we need the following

result due to Asok-Hoyois-Wendt [AHW16, Proposition 2.3.2].

1The translation is a bit awkward: if E(j) is an A1-invariant motivic cohomology theory then its corresponding
minimalist version is given by X(j) := E(j)[−j]|SmCAlgR

.
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Proposition 1.1.6. Right Kan extension implements an equivalence

ShvAffNis(SmCAlgop
R )

'−→ ShvNis(SmR).

1.2. Examples of motivic cohomology theories. We now arrive at examples of motivic
cohomology theories:

Example 1.2.1 (Étale cohomology). Let 1
p ∈ OB and r > 1. Then set

E(j) := RΓét(−;µ⊗jpr )[2j].

Standard facts from étale cohomology theory tells us that E(j) is an A1-invariant Nisnevich
sheaf (in fact, an étale sheaf). The theory of chern classes in étale cohomology produces, for
each line bundle L on X, a first Chern class class c1(L) ∈ H2

ét(X;µpr ). From this we can produce
the P1-bundle datum at all levels; the fact that the map

Hi
ét(X;µ⊗jpr )⊕Hi−2

ét (X;µ⊗j−1
pr )

π∗⊕π∗∪c1(O(1))−−−−−−−−−−−→ Hi
ét(P1 ×X;µ⊗jpr )

is an equivalence (the projective bundle formula) tells us that we have a homotopy invariant
motivic cohomology theory prescribed by E(•) := RΓét(−;µ⊗•pr ). We denote this as Hétµpr,S ∈
SH(S) and suppress the subscript S whenever the context is clear.

Example 1.2.2 (de Rham cohomology in characteristic zero). Let f : X → S be a smooth
morphism2 then form a chain complex of OX-modules:

Ω•X/S = [0→ OX
d−→ Ω1

X/S → Ω2
X/S → · · ·Ω

q
X/S →],

called the relative de Rham complex. The (relative) de Rham cohomology of f is the
presheaf on SmS given by

dR−/S : (X→ S) 7→ RΓ(X,Ω•X/S) ∈ D(S).

If we set

E(j) := dR−/S[2j]

then we almost get an example. Indeed, by virtue of being an instance of coherent cohomology,
dR−/S is an étale sheaf on SmS and hence a Nisnevich sheaf. Furthermore, we have a chern
class map on de Rham cohomology given by [Stacks, Tag 0FLE]:

Pic(X)→ H2(dRX/S).

This gives rise to an equivalence [Stacks, Tag 0FMS]:

dRX/S
π∗⊕π∗∪c1(O(1))−−−−−−−−−−−→ dRP1

X/S
⊕ dRP1

X/S
[2].

is an equivalence. However, de Rham cohomology fails to be A1-invariant; it is only so in
characteristic zero [Stacks, Tag 0FUI].

So let us restrict ourselves in this setting. We can describe the bonding map in terms of a
miminalist A1-invariant motivic cohomology theory as follows:

dRX/S → dRGm,X/S[1](' dRP1
X/S

[2]) ω 7→ dt
t ∧ ω.

Then, setting

dR(j) := dR−/S[j],

we obtain an minimalist A1-invariant motivic cohomoology theory which we denote by HdRS.

2What follows can be defined more generally, but are usually pathological; what one needs to do instead is
to animate, a technique which we will find invaluable in the course of our adventure.
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1.3. Algebraic K-theory. In this lecture, we begin properly discussing and constructing al-
gebraic K-theory; however we will not give a comprehensive treatement of this object — that
is for another class. We begin with the most elementary possible definition. First, let us recall
the theory of E∞-spaces; such an object is a functor

M : Fin? → Spc,

satisfying the Segal condition: for each n > 1 we have maps

ρi : {1, · · · , n}+ → {1}+ j 6= i 7→ +, i 7→ 1,

which altogether induce ∏
M(ρi) : M({1, · · · , n}+)→ M({1}+);

and we ask that these maps are equivalences and that the canonical map

∗ → M(∅+)

is as well. This forms a subcategory CMon ⊂ Fun(Fin?,Spc), the higher algebra version of the
theory of commutative monoids. Objects in this subcategory are called E∞-spaces: roughly
they are spaces equipped with multiplications which are coherently commutative.

The map
{1, 2}+ → {1}+ 1, 2 7→ 1.

induces a “multiplication” (up to a choice of a homotopy inverse of the map labeled an equiva-
lence)

M({1}+)×M({1}+)
'←− M({1, 2}+)→ M({1}+);

and since π0 preserves products, π0(M({1}+)) has the structure of a classical commutative
monoid. An E∞-space is said to be grouplike if π0(M({1}+)) is a group. The inclusion of
grouplike E∞-spaces:

CGrp ⊂ CMon

admits a left adjoint M 7→ Mgrp called group completion. The latter procedure is somewhat
subtle: while it makes π0 of M commutative, it does so by introducing higher homotopy groups
into M.

Remark 1.3.1 (The group completion theorem). While the homotopy groups of Mgrp are
complicated, a theorem of McDuff and Segal shows that the homology of Mgrp is not too bad.
To state their result, note that if M is an H-space, then H∗(M) admits the structure of a graded
ring. Elements of π0(M) then form a multiplicative subset under the map π0(M) → H0(M) =
Z[π0(M)] whence we can look at the localization H∗(M)[π0(M)−1].

Theorem 1.3.2 (McDuff-Segal). The map H∗(M) → H∗(M
grp) witnesses a localization at

π0(M)−1. In particular we have an isomorphism of graded rings

H∗(M
grp) ' H∗(M)[π0(M)−1].

Remark 1.3.3 (Refinements by Nikolaus). Let M ∈ CMon, m ∈ π0(M). We set

TmM := colim(M
+m−−→ M

+m−−→ M
+m−−→ · · · );

this colimit is taken in spaces, but we see that it can be calculated in the ∞-category of M-
modules. This means that the resulting object inherits the natural structure of an M-module.
Let {m1, · · · ,mn} be an ordered set of elements of π0(M), then we can inductively define

T{m1,··· ,mn}M := Tmn
(T{m1,··· ,mn−1}M).

Let us write
T∞M := colim

S⊂I
TSM,

where {mi} ⊂ π0(M) are generators of the monoid, that we give some ordering. We have map

(1.3.4) T∞M→ T∞Mgrp ' Mgrp,
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where the equivalence is because the operation on a group does not do anything since action
by any element of π0(M) acts invertibly on M. Nikolaus has proved the following refienment of
the group completion theorem: the map (1.3.4) is an equivalence if and only if π1(T∞M, x) is
abelian for any x ∈ π0(T∞M, x) = π0(M)grp. An explanation is in the appendix.

Remark 1.3.5 (Monoids in the homotopy category). Any X ∈ CMon defines an object X ∈
CMon(hSpc), a homotopy type equipped with a multiplication which is commutative, unital
and associative up to (incoherent) homotopies. This is an example of a H-space, a pointed
space e : ∗ → H equipped with a pairing

µ : H×H→ H

which is only homotopy unital: µ(x, e) ' µ(e, x) ' x. This is enough to run the Eckman-Hilton
agument to conclude that π1(H, e) is an abelian group.

This procedure leads us to the construction of:

Construction 1.3.6 (Connective K-theory of a ring). Let R be a commutative ring. We let

Projfg(R) be the 1-category of finitely generated projective R-modules. Under the operation

of direct sum, Projfg(R) is a symmetric monoidal category and thus taking the maximal sub-

groupoid we get ιProjfg(R), a 1-groupoid which we can regard as a space; by the symmetric

monoidality of ⊕, ιProjfg(R) inherits the structure of an E∞-space from ⊕. Set the connective
K-theory of R to be

K>0(R) := (ιProjfg(R))grp,

the group completion. The K-groups of R is then given by:

K0(R) = π0(K(R));

Kj(R) := πj(K>0(R),O) j > 1.

Remark 1.3.7 (K-theory of more general rings). From Construction 1.3.6, it is evident that
K-theory of more general rings can be easily defined: for any E1-ring R, one considers PerfR ⊂
RModR the smallest stable subcategory of the ∞-category of right R-modules which contains
R and closed under retracts; this is the higher algebra version of finitely generated projective
modules. Then K(R) := (ιPerfR)grp.

Example 1.3.8 (K0 of a ring). By construction, we know exactly what K0 is: it is given by
the group completion of the commutative monoid of isomorphism classes of finitely generated
projective modules.

Remark 1.3.9 (Ring structure). We can assemble K-theory into a graded ring

K∗(R) :=
⊕
j>0

Kj(R),

where the product is a shadow of the fact that K>0(R) has an additional E∞-ring structure
induced by the ⊗-structure on finitely generated projective modules.

Remark 1.3.10 (K-theory spectrum). It is convenient to regard connective K-theory as a
spectrum, in view of a globalization procedure that we will soon perform. We write CMon the
∞-category of commutative monoids in anima, i.e., the ∞-category of E∞-spaces. Classically,
we have an equivalence between connective spectra and grouplike commutative monoids:

Spt>0 ' CGrp.

To be slightly more explicit about this equivalence: we have the following diagram

Spt>0 Spt

CGrp Spc.

' Ω∞

forget
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Hence, the equivalence between connective spectra and grouplike commutative monoids above
is implemented by taking the infinite loop space. The product structure from the previous
discussion then says that K>0(R) is a E∞-ring spectrum. Without further comment, we consider
connective K-theory as a presheaf of spectra:

K>0 : CAlg♥ → CAlg.

Example 1.3.11 (The determinant and rank). We revisit the constructions of determinant

and rank at this level. Let Pic(R) ⊂ ιProjfg(R) be the subgroupoid of invertible R-modules,
i.e., line bundles on Spec R. Under tensor product, Pic(R) ∈ CGrp. It has homotopy groups
given by:

π0(Pic(R)) = Pic(R) π1(Pic(R),O) ∼= R×.

We have a morphism between presheaves of groupoids on commutative rings:

det : ιProjfg → Pic

which sends a module M to its top exterior power; this morphism preserves the base point O

and converts ⊕ to ⊗. We want to say that this map is a morphism of E∞-spaces but this is not
the case: the diagram of isomorphisms:

det(M⊕N) det(M)⊗ det(N)

det(N⊕M) det(N)⊗ det(M)

'

'

'

'

only commutes up to a sign given by (−1)rank(M)rank(N). We thus only have an induced map
K0(R)→ Pic(R).

To fix this we need the graded determinant. Set

PicZ(R) := Pic(R)×Homcts(Spec R;Z),

then
det∗(M) = (det(M), rank(M)),

does define a map of presheaves of E∞-spaces:

det∗ : ιProjfg → PicZ;

since the target is grouplike it descends to a map:

det∗ : K>0 → PicZ,

whose effects on homotopy groups were explained in a previous lecture.

We want to define K-theory as a motivic spectrum some care has to be taken in doing this.
Firstly, connective K-theory is not even a Zariski (let alone, Nisnevich) sheaf of spectra (on
affine schemes) and neither is it A1-invariant.

Proposition 1.3.12. Let R be a regular ring. The functor

SmCAlgR → Spt S 7→ K>0(S)

is an A1-invariant Nisnevich sheaf.

Indication of proof. Here are the key results one needs to prove Proposition 1.3.12. If S is a
regular ring and f ∈ S then we have a cofibre sequence of spectra

K>0(S on f)→ K>0(S)→ K>0(S[ 1
f ]).

The point here is that K>0(S on f) is the K-theory of a certain stable∞-category (and not just
some abstract fibre term) so it is important to extend the definition of K-theory to categories and

not just rings. Furthermore if S→ Q is étale and f is an element such that Q⊗S S/f
'−→ Q/fQ

then we have an equivalence on the fibre terms:

K>0(S on f)
'−→ K>0(Q on fQ);
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this equivalence happens already on the categorical level. This implies Nisnevich descent for
K-theory

There are many ways to prove that K-theory of a regular ring is A1-invariant; for example
one can compare K-theory to G-theory or use Dévissage and a calculation of the K-theory of
P1. �

To describe K-theory as a minimalist A1-invariant motivic cohomology theory, we use the
following key element:

Construction 1.3.13 (The Bass element). Consider the canonical map

ιProjfgZ[t,t−1] → K(Z[t, t−1]).

Then there is an element β ∈ π1(ιProjfgZ[t,t−1]) which corresponds to the automorphism of the

unit object, OGm,Z given by ·t. The image in K-theory

βZ ∈ K1(Z[t, t−1]),

will be called the Bass element, classified by a map S1 → K(Z[t, t−1]). Given any other ring
R, we write βR for the image of βZ in K1(R[t, t−1]).

The Bass element clearly determines a map of presheaves of spectra on CAlg:

β : Gm[1]→ K>0.

By adjunction we have an induced map

β : K>0 ⊗Gm[1]→ K>0

and thus a map
β : K>0 → map(Gm[1],K>0).

Lemma 1.3.14. On SmCAlg, we have an equivalence:

β : K>0 ' map(Gm[1],K>0).

Indication of proof. The key result is a calculation of K-theory of projective space (valid for all
rings, and even base schemes)

(1.3.15) K>0(P1
R) ' K>0(R){O} ⊕K>0(R){O(−1)− O}.

We explain how to deduce the lemma from this result.
We contemplate the diagram

(A1
+)/A1 r 0+ P1

+/P1 r 0+ P1/∞

Σ(Gm/1) K>0.

βO

β

Here, βO classifies the virtual bundle O(−1)−O and the map depends on a trivialization of O(−1)
at ∞. We can extend such a trivialization over P1 r 0 which then produces the map emnating
out of P1

+/P1 r 0+. That the square commutes boils down to the fact that the trivialization of
O(−1) over P1 r 0 and P1 r∞ coincide over Gm. Now, applying Propositions 1.1.5 and 1.3.12
we see that the map classifying the Bass element and the map classifying the second summand
in (1.3.15) are homotopic after LZar,A1 . This proves the result.

�

Remark 1.3.16 (Connective K-theory of schemes). In the above proof we have implicitly
defined connective K-theory of schemes. This is done by right Kan extension:

K>0(X) := lim
Spec R→X

K>0(R),

where the limit is taken in the∞-category of connective spectra/grouplike E∞-spaces. If we fix
a base regular ring R and took the right Kan extension from smooth commutative R-algebras to
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smooth R-schemes, then Proposition 1.1.6 proves that the resulting K-theory is also a Nisnevich
sheaf.

Be warned that, in general (so if we do not restrict to smooth situations), if we had taken the
right Kan extension in spectra, we might introduce the a version of K-theory with the wrong
negative K-groups of schemes. The problem is that this latter version of K-theory does not
satisfy the P1-bundle formula. To simultaneously ensure the correct values one has to proceed
as in [TT90].

Example 1.3.17. If R is a regular ring, setting

KGL(j) := K[−j]

and using Lemmas 1.3.14 and 1.3.12 products a minimalist A1-invariant motivic cohomology
theory. This is, however, not the good normalization. We will discuss this issues and more
when we define KGL that also incorporates its multiplicative structure.

2. The “official” category of motivic spectra

Let S be a base scheme. In order to proceed further we will need to be able to elegantly
manipulate motivic cohomology theories. The most important operation is probably taking
tensor products. In algebraic topology, the search for a good “smash product” of spectra took
the subject on various detours and turned out to be technically challenging before the dawn of
higher category theory. Now that we have the latter, we can assemble the category of motivic
cohomology theories into a nice symmetric monoidal ∞-category SH(S).

2.1. Universal properties, after Robalo-Voevodsky. We begin with the symmetric monoidal
∞-category of pointed motivic spaces:

(H(S)? := ShvNis,A1(SmS)?,∧,S+).

In it, we have Tate object (aka pointed P1):

T := cofib(h(S+)
∞−→ h(P1

S)) ∈ H(S)?

As already alluded to in the previous section, we have an equivalence in H(S)?:

S1 ∧Gm ' T.

General nonsense allows one to invert T and obtain a functor

H(S)? → SH(S) := H(S)?[T∧−1].

We characterize the composite functor Σ∞T+ : SmS → SmS+ → H(S)? → SH(S) with a
certain universal property:

Theorem 2.1.1 (Robalo-Voevodsky). The composite

Σ∞T+ : Sm×S → H(S)∧? → SH(S)⊗

satisfies the following universal property: if C⊗ is a pointed, presentable symmetric monoidal
∞-category, then precomposition defines a fully faithful functor

Fun⊗,L(SH(S),C) ↪→ Fun⊗(SmS,C)

whose essential image contains those symmetric monoidal functors F : SmS → C such that:

(1) F converts every Nisnevich square to a pullback square;
(2) F is A1-invariant;
(3) F takes T to an ⊗-invertible object.

Furthermore, any C admitting such a functor is necessarily stable.
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Indication of proof. The key point is the notion of n-symmetricity. An object in a symmetric
monoidal∞-category X ∈ C is said to be n-symmetric if the τn : X⊗· · ·⊗X→ X⊗· · ·⊗X, the
cyclic permutation on the n-tensor factors of X is homotopic to the identity. If X is n-symmetric
for some n, then we can identify the formal inversion of X on C (which formally exists and is
denoted by C[X⊗−1]) with a more concrete colimit of ∞-categories

C[X⊗−1] ' colim(C
X⊗−−−−→ C

X⊗−−−−→ · · · ).

The latter formula is used to establish the basic properties of C[X⊗−1] such a presentability and
stability (in the case that C = H(S)∧? ). The object T is indeed 3-symmetric as one is encouraged
to check by writing explicit homotopies.

See also the appendix to these notes for a “one categorical level down” discussion of what is
going on. �

Sometimes it useful to relate Theorem 2.1.1 to the discussions from last time. We have the
∞-category of P1-prespectra PSpT(SmS); roughly it is given by presheaves of spectra E(j)
equipped with bonding maps E(j)→ ΩP1E(j+1). While this∞-category is relatively concrete,
it does not admit a suitable symmetric monoidal structure. To convert a P1-prespectrum to a
P1-spectrum we set

(LP1E(?))(j) = colim
n

ΩnP1E(n+ j)

where the transition maps are induced by the bonding maps.

Corollary 2.1.2. The endofunctor is a localization

LP1,Nis,A1 : PSpT(SmS)→ PSpT(SmS)

has essential image SH(S).

Definition 2.1.3 (The S-motive of Y). If Y ∈ SmS, we set

MS(Y) := Σ∞T+Y.

If the context we clear, we often suppress the “S.” We call MS(Y) the S-motive of Y.

2.2. Calculating E-cohomology. To calculate the E-cohomology of an smooth S-scheme X,
we adopt the following notation. We set

Si,j := Σi−2jT⊗j ' Σi−jG⊗jm ;

and for any E ∈ SH(S) write

Σi,jE := Si,j ⊗ E.

If E ∈ SH(S), then the E-cohomology of Y is set to be

Ei,j(X) := π0 MapsSH(S)(MS(Y),Σi,jE).

Under this convention, if we write E = {E(j)} where E(j) is an A1-invariant motivic cohomology
theory we have that

Ei,j(X) ' π0(E(j)[i− 2j](X)).

For example, we have

(Hétµpr )i,j(Y) = Hi
ét(Y;µ⊗jpr )

and

KGLi,j(X) = K2j−i(X).
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3. The slice filtration

Having constructed a nice symmetric monoidal stable ∞-category category SH(S), we are
now equipped to discuss the slice filtration.

Definition 3.0.1. We define subcategories

· · ·SH(S)eff(n) ⊂ SH(S)eff(n−1) ⊂ · · · ⊂ SH(S)eff(0) = SH(S)eff ⊂ SH(S)eff(−1) ⊂ · · ·SH(S)

as follows: SH(S)eff(n) is the full subcategory SH(S) generated by {MS(Y)[−m]⊗ T⊗n : m ∈
Z,Y ∈ SmS} under colimits and extensions. An object E ∈ SH(S)eff(n) is called a n-effective
spectrum and if n = 0 we call E a effective spectrum.

We note that SH(S)eff(n) defines the non-negative part of a t-structure with right orthogonal
the subcategory of those spectra F such that

Maps(E,F) ' ∗ ∀E ∈ SH(S)eff(n).

In this case, we say that F is n-coeffective. However, since SH(S)eff(n) is defined to contain all
shifts, the t-structure is not very interesting as it has zero heart. The following lemma records
basic properties of these categories. Its formal properties are:

Lemma 3.0.2. Let X be a scheme, n ∈ Z.

(1) SH(S)eff(n) ⊂ SH(S) is a presentable, stable subcategory which is closed under ⊗.
(2) the inclusion ιn : SH(S)eff(n) ⊂ SH(S) admits a right adjoint

rn : SH(S)→ SH(S)eff(n).

(3) Set

fnsliceE := ιnrnE.

The construction

E ∈ SH(S) 7→ · · · → fnsliceE→ fn−1
slice E · · · f0

sliceE→ f−1
sliceE · · · =: f?sliceE

promotes to a lax symmetric monoidal functor

SH(S)→ SH(S)(Z,>)op .

Appendix A. Attaching cells

Let R be a commutative ring and f ∈ R be a nonzero divisor. Then how does one produce the
localization R[ 1

f ]? On the one hand it admits a universal property: it is the initial commutative

ring under R such that under any ring map R → S, f is sent to an invertible element. The
existence of such a ring can be proved by abstract nonsense. Nonetheless, it is helpful to have
a more explicit model. Consider the colimit, taken in R-modules

R
·f−→ R

·f−→ R
·f−→ · · · ...

Then the colimit of this diagram is an R-module and there is an candidate inverse of f . Indeed,
scalar multiplication by f on R is induced by the map between diagrams

R R · · · R
·f−→ · · ·

R R · · · R
·f−→ · · · ,

·f

·f

·f

·f ·f

·f ·f
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and a candidate inverse is given by the following map between diagrams; a process that “stag-
gers” the above diagram:

R R · · · R
·f−→ · · ·

R R · · · R
·f−→ · · · ,

·f

id

·f

id
id id

·f ·f

Indeed, stacking the two diagrams both ways gives:

R R R · · · R
·f−→ · · ·

R R R R
·f−→ · · · ,

·f

f

·f

f
id

f
id

·f ·f

so that the induced map on the level of colimits gives the identity map.
In higher algebra, the commutativity of diagrams is data and not property. In particular if

R is a E∞ (in whatever context), it only makes sense to ask for (invertible) 2-cells:

R R

R R.

·f

·g ·g
τf,g

·f

This poses some challenge in inverting elements in higher algebra.
Suppose that want to invert f in higher algebra. We begin by contemplating the higher

analog of multiplication by f :

R R R R
·f−→ · · ·

R R R R
·f−→ · · · ,

.

·f

·f

·f

·f
τ τ

·f

·f ·f

Its candidate inverse is easily constructed because we are just sticking in the identity cells.

R R · · · R
·f−→ · · ·

R R · · · R
·f−→ · · · ,

·f

id

·f

id
id id

·f ·f

However, when we start stacking we get two cells in between the parallelograms:

(A.0.1)

R R R R R
·f−→ · · ·

R R R R R
·f−→ · · · .

·f

f

·f

τ
f

·f

·f
τ τ

·f ·f ·f
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To create an inverse, we need the resulting colimit to be homotopic to the identity. To assure
this in the strongest way possible, we can ask that τ is the identity cell. But there are a couple
of other ways to ensure this:

(1) Concentrating on the diagram

R R

R R,

·f

f
τ

·f

·f

we see that τ is classified by a loop based on f2, hence τ defines a map S1 → R at
f2 ∈ π0(R). By the E∞-structure of R, we know that τ2 ' id and thus this gives a
map Σ2 → π1(R, f2). We can ask that this map sends τ , i.e., the non-identity element
to 1 ∈ π1(R, f2).

(2) In fact, we can just ask that the map

Σ2 → π1(R, f2)→ π1(TfR, f2)

is trivial.
(3) Actually we ask for even less: the horizontal compositum of (A.0.1) and the E∞-

structure on R gives rise to a map

Σn → π1(R, fn)→ π1(TfR, fn)

We need only ask that the cyclic permutation (12 · · ·n) gets sent to the identity.

Pushing this argument one learns that if R is a E∞-monoid, then the map T∞R → Rgrp

is an equivalence if and only if for each f ∈ π0(R) there exists some n (which may vary as n
varies) such that the map

Σn → πn(T∞R, fn)

has the cyclic permutation (12 · · ·n) in the kernel. This is the moment when there is cell
attaching. In general, filtered colimits commute with homotopy groups, so the homotopy of
T∞R will just be a colimit of the homotopy of R’s: in particular if πk(R) = 0, then πk(T∞R)
is still zero. But in order to guarantee the conditions above, we need to attach cells which can
affect add new homotopy groups to T∞R.

In fact, the correct hypothesis is that we want π1 to be hypoabelian: it has no nontrivial
perfect subgroups. Recall that a group is perfect if it is equals to its own commutator subgroup:
G = [G,G]. Note that the process of passing froM T∞R to Rgrp is not quite as simple as
attaching one cell for each generator: we have to do this functorially and we have to ensure
that it is the initial thing whose π1 is hypoabelian.
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